DOI QR코드

DOI QR Code

Study of the Dehydrogenation Characteristics of Pt-Sn Catalysts by Propane Pulse Injection

프로판 펄스 주입에 의한 백금주석촉매의 탈수소반응 특성 연구

  • Koh, Hyoung Lim (Department of Chemical Engineering, Hankyong National University) ;
  • Jung, Jae-Won (Department of Chemical Engineering, Hankyong National University) ;
  • Choi, Yi-Sun (Department of Chemical Engineering, Hankyong National University)
  • Received : 2019.03.08
  • Accepted : 2019.04.10
  • Published : 2019.08.01

Abstract

The results of the catalytic reaction by pulsed injection of reactants are useful for studying the initial reaction characteristics in the case of many coke invloved reactions. The dehydrogenation characteristics of alumina supported platinum tin catalysts were investigated by pulsed injection of propane. The yield of propylene was maximized when the reduction time of propane injection catalyst was $550^{\circ}C$. Raman analysis showed that the amount of coke was very small when PtSn (4.5) catalyst was used and the short contact time was simulated by propane pulse injection. n order to differentiate the degree of dispersion of platinum, PtSn (4.5) catalyst was sintered at $900^{\circ}C$ with hydrogen, and then the temperature of air - redispersion was varied and propane pulse was injected. As a result, conversione and yield were the highest when air-redispersion temperature is $600^{\circ}C$. The lower the air-redispersion temperature, the higher the selectivity. As the tin content in the platinum catalyst increased, the propane conversion was lowered, but the selectivity to propylene increased and the yield increased. From this, it can be seen that the tin-added platinum catalyst is less active than the platinum catalyst from the beginning of the reaction, which is less affected by coke. The dehydrogenation reaction by the propane pulse injection shows a higher conversion rate than the result of continuous injection due to the formation of COx, and the amount of coke is very small. Decrease in selectivity due to the formation of COx can be reduced by increasing the reduction temperature and time.

반응물의 펄스주입에 의한 촉매반응결과는 코크가 많은 반응의 경우 초기반응특성을 연구하는데 유용하다. 프로판의 펄스주입으로 알루미나에 담지된 백금주석촉매의 탈수소 반응 특성을 연구하였다. 프로판 주입전 촉매의 환원을 $550^{\circ}C$에서 한 경우, 환원시간이 1시간인 경우 프로필렌의 수율이 최대가 되었다. PtSn (4.5)촉매를 사용하고, 프로판 펄스 주입에 의해 짧은 접촉시간을 모사한 경우 코크의 양이 매우 적었음을 Raman분석으로 알 수 있었다. 백금의 분산도를 다르게 하기위하여 PtSn (4.5)촉매를 수소로 $900^{\circ}C$에서 신터링 후 공기-재분산시의 온도를 다르게 처리한 후, 프로판 펄스 주입한 결과 공기처리 온도가 $600^{\circ}C$ 일 때 프로판의 전환율과 수율은 가장 높았다. 공기-재분산의 온도가 낮을수록 선택도는 높았다. 백금촉매에 주석함량이 증가함에 따라 프로판 전환율은 낮아졌지만, 프로필렌으로의 선택도는 높아져서, 수율은 증가하였다. 이로부터 주석을 첨가한 백금촉매는 코크의 영향이 적은 반응초기부터 백금촉매보다 활성이 낮다는 것을 알 수 있다. 프로판 펄스주입에 의한 탈수소반응은 COx의 생성에 의해 연속주입에 의한 결과보다 높은 전환율을 보이고, 코크의 양이 매우 적은 특징을 보이고 있다. COx의 생성에 의한 선택도 하락은 환원온도와 시간을 증가시키면 줄일 수 있다.

Keywords

HHGHHL_2019_v57n4_575_f0001.png 이미지

Fig. 1. Shematic diagram for propane pulse-injection dehydrogenation reaction test equipment.

HHGHHL_2019_v57n4_575_f0002.png 이미지

Fig. 2. Propane pulse-injection dehydrogenation performance of PtSn (4.5) with reduction duration time (T = 550 ℃, feed pulse: propane 50/nitrogen 50 = 100 μL, catalyst 01.g).

HHGHHL_2019_v57n4_575_f0003.png 이미지

Fig. 3. Effect of reduction temperature on catalytic performance of propane pulse-injection dehydrogenation (T = 550 ℃, feed pulse: propane 50/nitrogen 50 = 100 μL, catalyst 01.g).

HHGHHL_2019_v57n4_575_f0004.png 이미지

Fig. 4. Effect of air-redispersion temperature after hydrogen sintering on catalytic performance of propane pulse-injection dehydrogenation of PtSn (4.5) (T = 550 ℃, feed pulse: propane 50/nitrogen 50 = 100 μL, catalyst 01.g).

HHGHHL_2019_v57n4_575_f0005.png 이미지

Fig. 5. Effect of added Sn amount to platinum catalyst on propane pulse-injection dehydrogenation reaction (T = 550 ℃, feed pulse: propane 50/nitrogen 50 = 100 μL, catalyst 01.g).

HHGHHL_2019_v57n4_575_f0006.png 이미지

Fig. 6. XRD patterns of PtSn(4.5) catalysts of air-redispersion after hydrogen-sintering with various temperature.

HHGHHL_2019_v57n4_575_f0007.png 이미지

Fig. 7. Raman spectroscopy of used PtSn(4.5) catalysts with various air-redispersion temperature after hydrogen-sintering.

HHGHHL_2019_v57n4_575_f0008.png 이미지

Fig. 8. XPS spectra of used PtSn(4.5) catalysts with various air-redispersion temperature after hydrogen-sintering.

Table 1. XPS analysis of catalysts subjected to different conditions

HHGHHL_2019_v57n4_575_t0001.png 이미지

References

  1. Jesper, J. H. B. Sattler, Javier Ruiz-Martinez, Eduardo Santillan- Jimenez, and Bert M. Weckhuysen, "Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides," Chem. Rev., 114, 10613-10653(2014). https://doi.org/10.1021/cr5002436
  2. Nawaz, Z., "Light Alkane Dehydrogenation to Light Olefin Technologies: A Comprehensive Review," Rev. Chem. Eng., 31, 413-436(2015). https://doi.org/10.1515/revce-2015-0012
  3. Bhasin, M. M., McCain, J. H., Vora, B. V., Imai, T. and Pujado, P. R., Appl. Catal. A., 221, 397-419(2001). https://doi.org/10.1016/S0926-860X(01)00816-X
  4. Loc, L. C., Gaidai, N. A. and Kipeman, S. L., In: Proc. 9th Internat. Congr. Catal., 3, 1261(1988).
  5. Jablonski, E. L., Castro, A. A., Scelza, O. A. and Miguel, S. R. de., "Effect of Ga Addition to Pt/$Al_2O_3$ on the Activity, Selectivity and Deactivation in the Propane Dehydrogenation," Appl. Catal. A. Gen., 183, 189-198(1999). https://doi.org/10.1016/S0926-860X(99)00058-7
  6. Yu, C., Ge, Q., Xu, H. and Li, W., "Propane Dehydrogenation to Propylene over Pt-based Catalysts," Catal. Lett., 112, 197-201 (2006). https://doi.org/10.1007/s10562-006-0203-y
  7. Corro, C., Marecot, P., Barbier, J., Bartholomew, C. H. and Fuentes, G. A., "Catalyst Deactivation 1997," Stud. Surf. Sci. Catal., 111, 359(1997). https://doi.org/10.1016/S0167-2991(97)80175-9
  8. Miguel, S. R. de., Jablonski, E. L., Castro, A. A. and Scelza, O. A., J. Chem. Technol. Biotechnol., 75, 596(2000). https://doi.org/10.1002/1097-4660(200007)75:7<596::AID-JCTB251>3.0.CO;2-6
  9. Praserthdam, P., Mongkhonsi, T., Kunatippapong, S., Jaikaew, B. and Lim, N., "Determination of Coke Deposition on Metal Active Sites of Propane Dehydrogenation Catalysts," Stud. Surf. Sci. Catal., 111, 153-158(1997). https://doi.org/10.1016/S0167-2991(97)80150-4
  10. Kumar, M. S., Chen, D., Walmsley, J. C. and Holmen A., "Dehydrogenation of Propane over Pt-SBA-15: Effect of Pt Particle Size," Catal. Commun., 9, 747-750(2008). https://doi.org/10.1016/j.catcom.2007.08.015
  11. Akporiaye, D., Jensen, S. F., Olsbye, U., Rohr, F., Rytter, E., Ronnekleiv, M. and Spielkavik, A. I., "A Novel, Highly Efficient Catalyst for Propane Dehydrogenation," Ind. Eng. Chem. Res., 40, 4741-4748(2001). https://doi.org/10.1021/ie010299+
  12. Hullmann, D., Wendt, G., Singliar, U. and Ziegenbalg, G., "Propane Dehydrogenation over Supported Platinum Silicon Nitride Catalysts," Appl. Catal. A. Gen., 225, 261-270(2002). https://doi.org/10.1016/S0926-860X(01)00871-7
  13. Beekman, J. W. and Froment, G. F., "Catalyst Deactivation by Active Site Coverage and Pore Blockage," Ind. Eng. Chem. Fundamen., 18, 245-256(1979). https://doi.org/10.1021/i160071a009
  14. Gascon, J., Tellez, C., Herguido, J. and Menendez, M., "A Twozone Fluidized Bed Reactor for Catalytic Propane Dehydrogenation," Chem. Eng. J., 106, 91-96(2005). https://doi.org/10.1016/j.cej.2004.11.005
  15. Sanfilippo, D., Buonomo, F., Fusco, G., Lupieri, M. and Miracca, I., "Fluidized Bed Reactors for Paraffins Dehydrogenation," Chem. Eng. Sci., 47, 2313-2318(1992). https://doi.org/10.1016/0009-2509(92)87053-S
  16. Miracca, I. and Piovesan, L., "Light Paraffins Dehydrogenation in a Fluidized Bed Reactor," Catal. Today., 52, 259-269(1999). https://doi.org/10.1016/S0920-5861(99)00080-2
  17. Siriwardane, R., Benincosa, W., Riley, J., Tian, H. and Richards, G., "Investigation of Reactions in a Fluidized Bed Reactor During Chemical Looping Combustion of Coal/steam with Copper Oxideiron Oxide-alumina Oxygen Carrier," Appl. Energy., 183, 1550-1564(2016). https://doi.org/10.1016/j.apenergy.2016.09.045
  18. Banerjee, S. and Agarwal, R., "Transient Reacting Flow Simulation of Spouted Fluidized Bed for Coal-direct Chemical Looping Combustion with Different Fe-based Oxygen Carriers," Appl. Energy., 160, 552-560(2015). https://doi.org/10.1016/j.apenergy.2015.10.013
  19. Sanfilippo, D., "Dehydrogenations on Fluidized Bed: Catalysis and Reactor Engineering," Catal. Today., 178, 142-150(2011). https://doi.org/10.1016/j.cattod.2011.07.013
  20. Sim, S., Gong, S., Bae, J., Park, Y. K., Kim, J., Choi, W. C., Hong, U. G., Park, D. S., Song, I. K., Seo, H., Kang, N. Y. and Park, S., "Chromium Oxide Supported on Zr Modified Alumina for Stable and Selective Propand Dehydrogenation in Oxygen Free Moving Bed Process," Molecular Catalysis., 436, 164-173(2017). https://doi.org/10.1016/j.mcat.2017.04.022
  21. Kim, G. H., Jung, K. D., Kim, W. I., Um, B. H., Shin, C. H., Oh, K. and Koh, H. L., "Effect of Oxychlorination Treatment on the Regeneration of Pt-Sn/$Al_2O_3$ Catalyst for Propane Dehydrogenation," Research on Chemical Intermediates, 42, 351-365(2016). https://doi.org/10.1007/s11164-015-2300-2
  22. Kawakami, M., Karato, T., Takenaka, T. and Yokoyama, S., "Structure Analysis of Coke, Wood, Charcoal and Bamboo Charcoal by Raman Spectroscopy and Their Reactrion Rate with $CO_2$," The Iron and Steel Institute of Japan, 45, 1027-1034(2005). https://doi.org/10.2355/isijinternational.45.1027
  23. Choi, S. M., "A Horizon of Science," Korea Institute for Advanced Study, 47, 23-25(2013).
  24. Shan, Y., Sui, Z., Zhu, Y., Chen, D. and Zhou, X., "Effect of Steam Addition on the Structure and Activity of Pt-Sn Catalysts in Propane Dehydrogenation," Chem. Eng. J., 278, 240-248(2015). https://doi.org/10.1016/j.cej.2014.09.107
  25. Han, Z., Li, S., Jiang, F., Wang, T., Ma, X. and Gong, J., "Propane Dehydrogenation over Pt-Cu Bimetallic Catalysts: the Nature of Coke Deposition and the Role of Copper," Nanoscale, 6, 10000-10008(2014). https://doi.org/10.1039/C4NR02143F
  26. Wagner C. D., NIST X-ray Photoelectron Spectroscopy Database, NIST, Gathersburg, 1989.
  27. Virnovskaia, A., Jorgensen, S., Hafizovic, J., Prytz, O., Kleimenov, E., Havecker, M., Bluhm, H., Knop-Gericke, A., Schlogl, R. and Olsbye, U., "In situ XPS Investigation of Pt(Sn)/Mg(Al)O Catalysts During Ethane Dehydrogenation Experiments," Surf. Sci. 601, 30-43(2007). https://doi.org/10.1016/j.susc.2006.09.002
  28. Vu, B. K., Song, M. B., Ahn, I. Y., Suh, Y. W., Suh, D. J., Kim, W. I., Koh, H. L., Choi, Y. G. and Shin, E. W., "Pt-Sn Alloy Phases and Coke Mobility over Pt-Sn/$Al_2O_3$ and Pt-Sn/$ZnAl_2O_4$ Catalysts for Propane Dehydrogenation," Appl. Catal. A., 400, 25-33 (2011). https://doi.org/10.1016/j.apcata.2011.03.057
  29. Adkins, S. R. and Davis, B. H., "The Chemical State of Tin in Platinum-tin-alumina Catalysts," J. Catal., 89, 371-379(1984). https://doi.org/10.1016/0021-9517(84)90313-0
  30. Siri, G. J., Ramallo-Lopez, J. M., Casella, M. L., Fierro, J. L. G., Requejo, F. G. and Ferretti, O. A., "XPS and EXAFS Study of Supported PtSn Catalysts Obtained by Surface Organometallic Chemistry on Metals : Application to the Isobutane Dehydrogenation," Appl. Catal. A., 278, 239-249(2005). https://doi.org/10.1016/j.apcata.2004.10.004