• Title/Summary/Keyword: Pt Sn catalyst

Search Result 28, Processing Time 0.034 seconds

Effect of Hydrogen Ratio and Tin Addition on the Coke Formation of Platinum Catalyst for Propane Dehydrogenation Reaction (프로판 탈수소화 반응용 백금촉매의 코크 생성에 미치는 수소비와 주석첨가의 영향)

  • Kim, Soo Young;Kim, Ga Hee;Koh, Hyoung Lim
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.82-88
    • /
    • 2016
  • The loss of activity by coke is an important cause of catalyst deactivation during industrial operation. In this study, hydrogen ratio of reaction condition, which has influenced on coke formation over Pt-Sn catalyst, and regeneration of catalysts activity by coke burning, Pt sintering of coke burning as coke contents, effects of coke formation and deactivation with different Sn contents were confirmed. Pt-Sn-K catalyst supported on θ-alumina and γ-alumina was prepared progressively. Activity of regenerated catalyst for propane dehydrogenation was compared with fresh catalyst by coke burning, after propane dehydrogenation was carried out with different hydrogen ratio at 620 ℃ on fresh catalyst. Regenerated catalyst’s physical characterization such as BET, coke analysis and XRD was investigated. Through catalytic activity test and characterization, Sn contents of catalyst and hydrogen ratio in feed stream could affect coke formation on catalyst surface. Excessive coke makes loss of activity and Pt sintering during air regeneration process.

Redispersion of Sintered PtSn Catalyst by Oxygen Treatment (소결된 백금주석 촉매의 산소 처리에 의한 재분산 연구)

  • Choi, Yi Sun;Kim, Tae hee;Koh, Hyoung Lim
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.459-467
    • /
    • 2022
  • Redispersion of Pt-Sn particles in Pt, PtSn catalyst which have been sintered by high temperature hydrogen reduction was investigated using oxygen treatment with various temperatures. The aim of this study was to understand the relationship between the catalytic activity for propane dehydrogenation reaction and the change in the physicochemical properties of the catalyst. X-ray diffraction analysis (XRD), CO pulse chemisorption, and H2 temperature programmed reduction (H2-TPR) were performed to investigate the state of active metal and interactions between particles of redispersed catalyst. It was confirmed that the dispersion and particle size of platinum, the crystal phase of the catalyst, and the reduction behavior were changed according to the oxygen treatment. As for the catalytic activity in propane dehydrogeantion, sintered PtSn catalyst treated with oxygen at 500 ℃ showed best activity and recovery of initial activity. It was confirm that catalyst after oxygen treatment at 500 ℃ showed high dispersion of Pt and decreased particle size as the results of CO pulse chemisorption and XRD of catalyst, and thus the redispersion of PtSn particles in sintered catalyst was occurred. Catalytic activity was recovered due to redispersion using oxygen treatment, and the activity recovery of the PtSn catalyst was higher than that of Pt catalyst.

Catalytic Oxidation of Carbon Monoxide on Pt and $SnO_2$ (Pt 및 $SnO_2$ 촉매하에서의 일산화탄소의 산화반응)

  • Kwang Yul Choo;Hasuck Kim;Bonghyun Boo
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.183-192
    • /
    • 1980
  • Oxidation reactions of carbon monoxide on $SnO_2$, Sb-doped $SnO_2$, and Pt catalyst were studied. The oxidation reaction was found to be first order with respect to both CO and O$_2$ on $SnO_2$ and Sb-doped $SnO_2$ catalysts, and to be of half order on Pt catalyst. A small addition of Sb to $SnO_2$ (depant composition: 0.05∼0.1 mol %) increased the rate of oxidation. On the contrary, a large addition decreased the rate. From the rate expression of oxidation on Pt catalyst, the inhibition effect of carbon monoxide on the rate of oxidation was deduced. The experimentally obtained activatio energies were 5.7 kcal for the Sb doped $SnO_2$ catalyst (dopant composion: 0.05 mole%), and 6.4 kcal for the Pt catalyst. A possible reaction mechanism was proposed from the experimentally obtained kinetic data.

  • PDF

Synthesis and Characterization of Pt based Alloy Catalysts for Direct Ethanol Fuel Cell (직접 에탄올 연료전지용 백금합금촉매의 합성과 특성분석)

  • Kim, Yi-Young;Kim, Soo-Kil;Han, Jong-Hee;Kim, Han-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.109-114
    • /
    • 2008
  • Though ethanol can theoretically generate 12 electrons during oxidation to carbon dioxide, the complete oxidation of ethanol is hard to achieve due to the strong bond between the two carbons in its molecular structure. Therefore, development of high activity catalyst for ethanol oxidation is necessary for the commercialization of direct ethanol fuel cell. In this study, some binary and ternary electrocatalysts of PtSn/C and PtSnAu/C have been synthesized and characterized. The catalysts were fabricated with modified polyol method with the amounts of 20 wt%, where the Pt : Sn ratios in the PtSn/C were 1 : 0, 4 : 1, 3 : 1, 2 : 1, 1.5 : 1, 1 : 1, 1 : 1.5 and Pt:Sn:Au ratios in the PtSnAu/C were 5 : 5 : 0, 5 : 4 : 1, 5 : 3 : 2, 5 : 2 : 3. From the XRD and TEM analysis results, the catalysts were found to have face centered cubic structure with particle size of around $1.9{\sim}2.4\;nm$. The activity in the ethanol oxidation was examined with cyclic voltammetry and the results indicated that PtSn(1.5 : 1)/C and PtSnAu(5 : 2 : 3)/C had the highest activity in each catalyst system. Further tests with single cell were performed with those catalysts. It was found that PtSn/C(1.5 : 1) exhibited the best performance while the long term stability of PtSnAu/C(5 : 2 : 3) is better than PtSn/C(1.5 : 1).

Sensing Characteristics of Thin Pt/$SnO_2$Composite Film to CO Gas (Pt/$SnO_2$복합체 박막의 CO 가스감지특성)

  • 김동현;이상훈;송호근;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.12
    • /
    • pp.1135-1139
    • /
    • 2000
  • 본 연구에서는 Pt/Sn $O_2$박막의 CO 감지특성을 향상시키기 위하여 표면 형상을 제어하였다. Pt/Sn $O_2$계 박막센서의 최적 동작온도는 175$^{\circ}C$이었다. Pt가 12초 동안 증착된 Sn $O_2$가 200ppm의 CO 가스에 대하여 1.23의 최대감도를 나타내었고, 그 이상의 Pt 증착시간 증가에 따라 Sn $O_2$위의 Pt의 coverage가 증가하여 센서의 감도를 감소시켰다. 다층박막(multi-layer thin film)의 단층의 Pt/Sn $O_2$복합체 위에 다시 Sn $O_2$및 Pt의 cluster 층들을 연속적으로 증착함으로서 제작되었다. 단지 하나의 Pt 층만을 증착한 Sn $O_2$막보다 다층의 Pt/Sn $O_2$막이 더욱 우수한 감도( $R_{air}$/ $R_{co}$=1.72, CO: 200 ppm)를 나타내었다. Pt/Sn $O_2$다층박막의 우수한 감도의 원인은 Pt와 Sn $O_2$사이의 계면적 증대 때문인 것으로 생각되어 진다.다.

  • PDF

A Study on the Propane Dehydrogenation activity of Pt-Sn catalyst using MgAl2O4 support (MgAl2O4 지지체를 이용한 Pt-Sn/MgAl2O4의 프로판 탈수소 활성 연구)

  • Byun, Hyun-Joon;Koh, Hyounglim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.757-767
    • /
    • 2018
  • In the propane dehydrogenation reaction proceeding at high temperature, the main cause of deactivation of the catalyst is coke deposition and sintering. In order to investigate the catalysts for reducing such inactivation, we have investigated the applicability of $MgAl_2O_4$ as a carrier for the catalytic dehydrogenation reaction. $MgAl_2O_4$ was prepared by Alcohthermal method at calcination temperature of 800, 900, $1000^{\circ}C$, and $Pt-Sn/MgAl_2O_4$ catalyst was prepared by supporting Pt and Sn by co-impregnation method. The reaction temperature was conducted at a high temperature of 650, $600^{\circ}C$ to confirm the thermal stability. As a result of the reaction experiment, it was confirmed that the conversion rate and yield of propane dehydrogenation reaction test were higher than that of the carrier-applied catalyst having a carrier calcination temperature of 900 and $1000^{\circ}C$, when the carrier-applied catalyst having a calcination temperature of $800^{\circ}C$ was used, It was found that the yield was higher than that of $Pt-Sn/{\theta}-Al_2O_3$ at $650^{\circ}C$. TGA, BET, XRD, CO-chemisorption, and SEM-EDS analyzes were performed for characterization. $MgAl_2O_4-800^{\circ}C$ was correlated with the relationship between good yield, Pt dispersion and low deactivation rate.

A study on the gas reaction mechanism in catalyst/$SnO_2$ gas sensor (촉매/$SnO_2$ 가스 센서의 반응 구조에 관한 연구)

  • 이재홍;김창교;김진걸;조남인;김덕준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.276-283
    • /
    • 1997
  • A dry impregnation method was used for preparing pellet type Pt/$SnO_2$ gas sensor. The crystal structure, direction of the crystal, crystal size and microstructure between the catalyst and the support ($SnO_2$) were characterized with electron diffraction analysis, transmission electron microscopy, scanning electron microscopy. The characterization indicates that when Pt/$SnO_2$ sample is calcined at $400^{\circ}C$, the Cl content associated with the Pt phase diminishes and the part of Pt is moved into $SnO_2$ support. This results in the enhancement of gas sensitivity. After the reactor with a Pt/$SnO_2$ sample was run with a flow rate of 30 sccm (a mixture of 0.5% $H_2$ in $_N2$) for a while, the resistance of $SnO_2$ was saturated, but the $SnO_2$ kept absorbing $H_2$ gas. This indicates that the surface state was saturated. For the 14 ppm $H_2$ gas, the sensitivity of Pt/$SnO_2$ devices was about 81% at an operating temperature of $300^{\circ}C$.

  • PDF

Effect of Pt-Sn/Al2O3 catalysts mixed with metal oxides for propane dehydrogenation (프로판 탈수소 반응에 미치는 금속산화물과 혼합된 Pt-Sn/Al2O3 촉매의 영향)

  • Jung, Jae Won;Koh, Hyoung Lim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.401-410
    • /
    • 2016
  • The $Pt-Sn/Al_2O_3$ catalysts mixed with metal oxides for propane dehydrogenation were studied. $Cu-Mn/{\gamma}-Al_2O_3$, $Ni-Mn/{\gamma}-Al_2O_3$, $Cu/{\alpha}-Al_2O_3$ was prepared and mixed with $Pt-Sn/Al_2O_3$ to measure the activity for propane dehydrogenation. As standard sample, $Pt-Sn/Al_2O_3$ catalyst mixed with glassbead was adopted. In the case of catalytic activity test after non-reductive pretreatment of catalyst and metal oxide, $Pt-Sn/Al_2O_3$ mixed with $Cu-Mn/{\gamma}-Al_2O_3$ showed higher conversion of 15% and similar selectivity at $576.5^{\circ}C$, compared to conversion of 8% in standard sample. In the case of catalytic activity test after reductive pretreatment of catalyst and metal oxde, $Cu/{\alpha}-Al_2O_3$ showed higer yield than standard sample. But, increase of yield of most of samples after reductive pretreatment was not significant, so it was found that lattice oxygen of $Cu-Mn/{\gamma}-Al_2O_3$ is effective to propane dehydrogenation.

Study of the Dehydrogenation Characteristics of Pt-Sn Catalysts by Propane Pulse Injection (프로판 펄스 주입에 의한 백금주석촉매의 탈수소반응 특성 연구)

  • Koh, Hyoung Lim;Jung, Jae-Won;Choi, Yi-Sun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.575-583
    • /
    • 2019
  • The results of the catalytic reaction by pulsed injection of reactants are useful for studying the initial reaction characteristics in the case of many coke invloved reactions. The dehydrogenation characteristics of alumina supported platinum tin catalysts were investigated by pulsed injection of propane. The yield of propylene was maximized when the reduction time of propane injection catalyst was $550^{\circ}C$. Raman analysis showed that the amount of coke was very small when PtSn (4.5) catalyst was used and the short contact time was simulated by propane pulse injection. n order to differentiate the degree of dispersion of platinum, PtSn (4.5) catalyst was sintered at $900^{\circ}C$ with hydrogen, and then the temperature of air - redispersion was varied and propane pulse was injected. As a result, conversione and yield were the highest when air-redispersion temperature is $600^{\circ}C$. The lower the air-redispersion temperature, the higher the selectivity. As the tin content in the platinum catalyst increased, the propane conversion was lowered, but the selectivity to propylene increased and the yield increased. From this, it can be seen that the tin-added platinum catalyst is less active than the platinum catalyst from the beginning of the reaction, which is less affected by coke. The dehydrogenation reaction by the propane pulse injection shows a higher conversion rate than the result of continuous injection due to the formation of COx, and the amount of coke is very small. Decrease in selectivity due to the formation of COx can be reduced by increasing the reduction temperature and time.

Low temperature preparation of Pt alloy electrocatalysts for DMFC

  • Song, Min-Wu;Lee, Kyeong-Seop;Kim, Young-Soon;Shin, Hyung-Shik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.171-171
    • /
    • 2009
  • The electrodes are usually made of a porous mixture of carbon-supported platinum and ionomers. $SnO_2$ particles provide as supports that have been used for DMFCs, and it have high catalytic activities toward methanol oxidation. The main advantage of $SnO_2$ supported electrodes is that it has strong chemical interactions with metallic components. The high activity to a synergistic bifunctional mechanism in which Pt provides the adsorption sites for CO, while oxygen adsorbs dissociative on $SnO_2$. The reaction between the adsorbed species occurs at the Pt/$SnO_2$ boundary. The morphological observations were characterized by FESEM and transmission electron microscopy (TEM). $SnO_2$ particles crystallinity was analyzed by the X-ray diffraction (XRD). The surface bonded state of the $SnO_2$ particles and electrode materials were observed by the X-ray photoelectron spectroscopy (XPS). The electric properties of the Pt/$SnO_2$ catalyst for methanol oxidation have been investigated by the cyclic voltametry (CV) in 0.1M $H_2SO_4$ and 0.1M MeOH aqueous solution. The peak current density of methanol oxidation was increased as the $SnO_2$ content in the anode catalysts increased. Pt/$SnO_2$ catalysts improve the removal of CO ads species formed on the platinum surface during methanol electro-oxidation.

  • PDF