DOI QR코드

DOI QR Code

A Review of Domestic Research Trends of Fischer-Tropsch for the Production of Light Hydrocarbons and Middle Distillates From Syngas

합성가스로부터 경질탄화수소 및 중산유분을 생산하기 위한 Fischer-Tropsch의 국내연구동향

  • Kim, Jin-Ho (Plant Engineering Center, Institute for Advances Engineering (IAE)) ;
  • Kim, Hyo-Sik (Plant Engineering Center, Institute for Advances Engineering (IAE)) ;
  • Kim, Ji-Hyeon (Plant Engineering Center, Institute for Advances Engineering (IAE)) ;
  • Ryu, Jae-Hong (Plant Engineering Center, Institute for Advances Engineering (IAE)) ;
  • Kang, Suk-Hwan (Plant Engineering Center, Institute for Advances Engineering (IAE)) ;
  • Park, Myung-June (Department of Chemical Engineering, Ajou University)
  • 김진호 (고등기술연구원 플랜트엔지니어링센터) ;
  • 김효식 (고등기술연구원 플랜트엔지니어링센터) ;
  • 김지현 (고등기술연구원 플랜트엔지니어링센터) ;
  • 류재홍 (고등기술연구원 플랜트엔지니어링센터) ;
  • 강석환 (고등기술연구원 플랜트엔지니어링센터) ;
  • 박명준 (아주대학교 화학공학과)
  • Received : 2019.03.31
  • Accepted : 2019.05.29
  • Published : 2019.08.01

Abstract

Fischer-Tropsch synthesis process is a typical method for synthesizing hydrocarbons from syngas and is mainly known as iron (Fe) and cobalt (Co) catalysts. Currently, some technologies such as CTL (Coal to Liquid) and GTL (Gas to Liquid) are operated on a commercial scale depending on the products, but the research to produce light hydrocarbons and middle distillates directly has not been commercialized. Therefore, in this study, domestic studies for direct production of light hydrocarbons and middle distillates are summarized and the effect of catalyst preparation, promoter addition, zeolite combination on product selectivity is investigated.

Fischer-Tropsch 합성공정은 합성가스로부터 탄화수소를 합성하는 대표적인 방법이며, 주로 철(Fe)계와 코발트(Co)계 촉매로 알려져 있다. 현재 생성물에 따라 일부 기술(CTL, GTL 등)은 상용 규모로 운전되고 있으나, 경질탄화수소와 중간유분을 직접 생산하는 연구는 아직 상용화되지는 않았다. 그러므로, 본 연구에서는 국내에서 현재까지 경질탄화수소와 중간유분을 직접 생산하기 위한 연구들을 정리하였으며, 촉매의 제조법, 조촉매 첨가, 제올라이트의 조합과 같은 영향이 생성물의 선택도에 미치는 영향을 고찰하였다.

Keywords

HHGHHL_2019_v57n4_565_f0001.png 이미지

Fig. 1. Application of syngas [1].

HHGHHL_2019_v57n4_565_f0002.png 이미지

Fig. 2.Type of catalysts and reaction conditions for the heterogeneously catalyzed gas conversion [4].

HHGHHL_2019_v57n4_565_f0003.png 이미지

Fig. 3. Schematic representation of the morphological and phase change that occur on the α-Fe2O3 catalyst as a result of activation and reaction conditions [5].

HHGHHL_2019_v57n4_565_f0004.png 이미지

Fig. 4. Product distribution according to the Anderson-Schulz-Flory (ASF) model [6].

HHGHHL_2019_v57n4_565_f0005.png 이미지

Fig. 5. A correlation between the acidity and the yield of olefins in the range of C2~C4 hydrocarbons [9].

HHGHHL_2019_v57n4_565_f0006.png 이미지

Fig. 6. CO-TPR profiles of Fe-Cu-K/ZSM5 catalysts [10].

HHGHHL_2019_v57n4_565_f0007.png 이미지

Fig. 7. Carbon number distribution of hydrocarbon product after FT and cracking reaction. Catalysts: FT = 6K/100Fe-6Cu-16AlOx; cracking = ZSM-5 (SiO2/Al2O3, T = 280 ℃). Reaction conditions-FT synthesis (0.5 g cat.): T = 300 ℃; P = 10 atm; GHSV = 3600 (syngas: 30 cm3/min), cracking reaction (0.15 g cat.) [13].

HHGHHL_2019_v57n4_565_f0008.png 이미지

Fig. 8. Correlation of catalytic performance with the intensity ratio of C1s, which is the ratio of deposited carbon (I(dep)) and adsorbed carbon (I(ads)) peaks at binding energies of 288.2 and 284.4 eV respectively on the used catalysts [14].

HHGHHL_2019_v57n4_565_f0009.png 이미지

Fig. 9. The yield to C2-C4 olefin with respect to the superficial gas velocity in FBR and BFBR [15].

HHGHHL_2019_v57n4_565_f0010.png 이미지

Fig. 10. Carbon conversion and CH4 productivity on NixFe1-x/Al2O3 catalysts according to Fe contents [18].

HHGHHL_2019_v57n4_565_f0011.png 이미지

Fig. 11. C2-C4 hydrocarbon selectivity as a function of the CO conversion over 5Co-15Fe/γ-Al2O3 at 10 bar and different reaction temperatures and H2/CO ratios [20].

HHGHHL_2019_v57n4_565_f0012.png 이미지

Fig. 12. Correlation between the surface acidity and the selectivity of hydrocarbons [32].

HHGHHL_2019_v57n4_565_f0013.png 이미지

Fig. 13. Catalytic performance (CO conversion and product distribution) with respect to the acid site density on the ZSM5-modified Co/SiO2 catalysts [33].

HHGHHL_2019_v57n4_565_f0014.png 이미지

Fig. 14. Schematic diagram of ZSM5-modified Co/SiO2 and impregnated cobalt-based catalysts [33].

HHGHHL_2019_v57n4_565_f0015.png 이미지

Fig. 15. Effct of Promoter on the correlation between the surface activity and the selectivity of hydrocarbons [34].

HHGHHL_2019_v57n4_565_f0016.png 이미지

Fig. 16. Correlation between the Pt content and the yield of hydrocarbons [36].

Table 1. Literatures for middle distillates production by F-T synthesis

HHGHHL_2019_v57n4_565_t0001.png 이미지

Table 2. CO hydrogenation over Co-Al2O3-promoter/ZSM-5 catalysts (CO hydrogenation was carried out at H2/CO=2, WHSV=4,000 ml/g·h and P=2.0MPa)

HHGHHL_2019_v57n4_565_t0002.png 이미지

Table 3. Catalytic activity and product distribution on the ordered mesoporous Fe2O3-ZrO2 catalysts (CO hydrogenation was carried out at H2/CO=2, T=300 ℃, WHSV=8,000 L/kg·h and P=2.0MPa)

HHGHHL_2019_v57n4_565_t0003.png 이미지

Table 4. Catalytic performances on the Fe/KIT-6 catalysts (CO hydrogenation was carried out at H2/CO=2, T=350 ℃, WHSV=4,000 L/kg·h and P=2.0MPa)

HHGHHL_2019_v57n4_565_t0004.png 이미지

Table 5. Catalytic performances at a steady-state on the P/m-CoAl catalysts (CO hydrogenation was carried out at H2/CO=2, T=230 ℃, WHSV=6,000 L/kg·h and P=2.0MPa)

HHGHHL_2019_v57n4_565_t0005.png 이미지

Table 6. Catalytic performances at a steady-state on the CoZrP/KIT-6 catalysts (CO hydrogenation was carried out at H2/CO=2, T=230 ℃, WHSV=8,000 L/kg·h and P=2.0MPa)

HHGHHL_2019_v57n4_565_t0006.png 이미지

References

  1. Kim, H. S., Kim, J. H., Kang, S. H., Ryu, J. H., Yang, H. C. and Chung, D. Y., "Recent Trends for Temperature Control Technology of Catalytic Reaction Processes Accompanied the Exothermic Reaction from Syngas," Journal of Energy & Climate Change, 10(2), 133-164(2015).
  2. Stranges, A. N., "A History of the Fischer-Tropsch Synthesis in Germany 1926-45," Studies in Surface Science and Catalysis, 163, 1-27(2007). https://doi.org/10.1016/S0167-2991(07)80469-1
  3. Fischer, F. and Tropsch, H., "Die Erodolsynthese bei Gewohnlichem Druck aus den Vergangsprodukten der Kohlen," Brennstoff-Chem., 7, 97(1926).
  4. Park, S. J., "Fischer-Tropsch Synthesis on Fe-Cu-K/zeolite for the production of light olefins," Master. Dissertation, Chungnam national university, daejeon(2008).
  5. Bian, G., Oonuki, A., Koizumi, N., Nomoto, H. and Yamada, M., "Studies with a Precipitated Iron Fischer-Tropsch Catalyst Reduced by $H_2$ or CO," J. of Molecular Catalysis A, 186, 203-213(2002). https://doi.org/10.1016/S1381-1169(02)00186-3
  6. Li, C., Yuan, X. and Fujimoto, K., "Development of Highly Stable Catalyst for Methanol Synthesis from Carbon Dioxide," Appl. Catal. A, 469, 306-311(2014). https://doi.org/10.1016/j.apcata.2013.10.010
  7. Gao, P., Zhong, L. S., Zhang, L. N., Wang, H., Zhao, N., Wei, W. and Sun, Y. H., "Yttrium Oxide Modified Cu/ZnO/$Al_2O_3$ Catalysts Via Hydrotalcite-like Precursors for $CO_2$ Hydrogenation to Methanol," Catal. Sci. Technol., 5(9), 4365-4377(2015). https://doi.org/10.1039/C5CY00372E
  8. Takashi, S., Horikazu, I. and Takashi, Y., "Catalyst for Production of High Calorie Gas and its Production," Japan Patent No. 03625528(2005).
  9. Kang, S. H., Bae, J. W., Sai Prasad, P. S. and Jun, K. W., "Fischer- Tropsch Synthesis Using Zeolite-supported Iron Catalysts for the Production of Light Hydrocarbons," Catal Lett, 125(3), 264-270 (2008). https://doi.org/10.1007/s10562-008-9586-2
  10. Cheon, J. Y., Kang, S. H., Bae, J. W., Park, S. J., Jun, K. W., Dhar, G. M. and Lee, K. Y., "Effect of Active Component Contents to Catalytic Performance on Fe-Cu-K/ZSM5 Fischer-Tropsch Catalyst," Catal Lett, 134(3), 233-241(2010). https://doi.org/10.1007/s10562-009-0241-3
  11. Kang, S. H., Bae, J. W., Sai Prasad, P. S., Park, S. J., Woo, K. J. and Jun, K. W., "Effect of Preparation Method of Fe-based Fischer- Tropsch Catalyst on their Light Olefin Production," Catal Lett, 130(3), 630-636(2009). https://doi.org/10.1007/s10562-009-9925-y
  12. Bae, J. W., Park, S. J., Kang, S. H., Lee, Y. J., Jun, K. W. and Rhee, Y. W., "Effect of Cu content on the bifunctional Fischer- Tropsch Fe-Cu-K/ZSM5 Catalyst," J. Ind. Eng. Chem., 15(6), 798-802(2009). https://doi.org/10.1016/j.jiec.2009.09.002
  13. Park, J. Y., Lee, Y. J., Jun, K. W., Bae, J. W., Viswanadham, N. and Kim, Y. H., "Direct Conversion of Synthesis Gas to Light Olefins Using Dual Bed Reactor," J. Ind. Eng. Chem., 15(6), 847-853(2009). https://doi.org/10.1016/j.jiec.2009.09.011
  14. Kang, S. H., Koo, H. M., Kim, A. R., Lee, D. H., Ryu, J. H., Yoo, Y. D. and Bae, J. W., "Correlation of the Amount of Carbonaceous Species with Catalytic Performance on Iron-based Fischer-Tropsch Catalysts," Fuel Processing Technology, 109, 141-149(2013). https://doi.org/10.1016/j.fuproc.2012.09.052
  15. Kang, S. H., Bae, J. W., Cheon, J. Y., Lee, Y. J., Ha, K. S., Jun, K. W., Lee, D. H. and Kim, B. W., "Catalytic Performance on Iron-based Fischer-tropsch Catalyst in Fixed-bed and Bubbling Fluidized-bed Reactor," Applied Catalysis B: Environmental, 103(1), 169-180(2011). https://doi.org/10.1016/j.apcatb.2011.01.024
  16. Kim, J. H., Kim, H. S., Oh, S. C., Ryu, J. H. and Kang, S. H., "Catalyst for Synthesizing Synthetic Natural Gas and Manufacturing Method for High Calorific Synthetic Natural Gas Using the Same," Korea Patent No.10-2017-0181241(2017).
  17. Kim, J. H., Kim, H. S., Ryu, J. H., Kang, S. H., Lee, S. C., Chae, H. J., Jo, S. B. and Kim, T. Y., "Method for Preparing Synthetic Natural Gas Using Co-Fe-Ni-based Catalyst," Korea Patent No.10-2018-0169727(2018).
  18. Kang, S. H., Ryu, J. H., Kim, J. H., Seo, S. J., Yoo, Y. D., Sai Prasad, P. S., Lim, H. J. and Byun, C. D., "Co-methanation of CO and $CO_2$ on the NiX-Fe1-X/$Al_2O_3$ Catalysts; Effect of Fe Contents," Korean J. Chem. Eng., 28(12), 2282-2286(2011). https://doi.org/10.1007/s11814-011-0125-2
  19. Lee, Y. H. and Lee, K. Y., "Effect of Surface Composition of Fe Catalyst on the Activity for the Production of High-calorie Synthetic Natural Gas (SNG)," Korean J. Chem. Eng., 34(2), 320-327 (2017). https://doi.org/10.1007/s11814-016-0272-6
  20. Jo, S. B., Chae, H. J., Kim, T. Y., Lee, C. H., Oh, J. U., Kang, S. H., Kim, J. W., Jeong, M., Lee, S. C. and Kim, J. C., "Selective CO Hydrogenation over Bimetallic Co-Fe Catalysts for the Production of Light Paraffin Hydrocarbons ($C_2-C_4$): Effect of $H_2$/CO Ratio and Reaction Temperature," Catalysis Communications, 117, 74-78(2018). https://doi.org/10.1016/j.catcom.2018.08.026
  21. Martinez, A., Rollan, J., Arribas, M. A., Cerqueira, H. S., Costa and A. F. and S.-Aguiar, E. F., "A Detailed Study of the Activity and Deactivation of Zeolites in Hybrid Co/$SiO_2$-zeolite Fischer-Tropsch Catalysts," J. Catal. 249(2), 162-173(2007). https://doi.org/10.1016/j.jcat.2007.04.012
  22. Martinez, A., Valencia S., Murciano R., Cerqueira, H.S., Costa A.F., and S.-Aguiar, E. F., "Catalytic Behavior of Hybrid Co/$SiO_2$-(medium-pore) Zeolite Catalysts During the One-stage Conversion of Syngas to Gasoline," Appl. Catal. A, 346, 117-125(2008). https://doi.org/10.1016/j.apcata.2008.05.015
  23. Li, Y., Wang, T., Wu, C., Lv, Y. and Tsubaki, N., "Gasoline-Range Hydrocarbon Synthesis over Cobalt-Based Fischer-Tropsch Catalysts Supported on $SiO_2$/HZSM-5," Energy & Fuels, 22(3), 1897-1901(2008). https://doi.org/10.1021/ef700625z
  24. Li, Y., Wang, T., Wu, C., Qin, X. and Tsubaki, N., "Effect of Ru Addition to Co/$SiO_2$/HZSM-5 Catalysts on Fischer-Tropsch Synthesis of Gasoline-range Hydrocarbons," Catal. Commun., 10, 1868-1874(2009). https://doi.org/10.1016/j.catcom.2009.06.021
  25. Liu, Z. W., Li, X., Asami, K. and Fujimoto, K., "Insights into a Multifunctional Hybrid Catalyst Composed of Co/$SiO_2$ and Pd/ Beta for Isoparaffin Production from Syngas," Ind. Eng. Chem. Res., 44(19), 7329-7336(2005). https://doi.org/10.1021/ie050645d
  26. Liu, Z.W., Li, X., Asami, K. and Fujimoto, K., "Syngas to Isoparaffins over Co/$SiO_2$ Combined with Metal/zeolite Catalysts," Fuel Process. Technol., 88(2), 165-170(2007). https://doi.org/10.1016/j.fuproc.2006.02.009
  27. He, J., Yoneyama, Y., Xu, B., Nishiyam, N. and Tsubaki, N., "Designing a Capsule Catalyst and Its Application for Direct Synthesis of Middle Isoparaffins", Langmuir, 21(5), 1699-1702(2005). https://doi.org/10.1021/la047217h
  28. Bao, J., He, J., Zhang, Y., Yoneyam, Y. and Tsubaki, N., "A Core/Shell Catalyst Produces a Spatially Confined Effect and Shape Selectivity in a Consecutive Reaction," Angew. Chem. Int., 47(2), 353-359(2008). https://doi.org/10.1002/anie.200703335
  29. Yang, G., He, J., Yoneyama, Y., Tan, Y., Han, Y. and Tsubaki, N., "Preparation, Characterization and Reaction Performance of H-ZSM-5/cobalt/silica Capsule Catalysts with Different Sizes for Direct Synthesis of Isoparaffins," Appl. Catal. A, 329, 99-105(2007). https://doi.org/10.1016/j.apcata.2007.06.028
  30. Li, X., He, J., Meng, M., Yoneyama, Y. and Tsubaki, N., "Onestep Synthesis of H-b Zeolite-enwrapped Co/$Al_2O_3$ Fischer- Tropsch Catalyst with High Spatial Selectivity," J. Catal., 265(1), 26-34(2009). https://doi.org/10.1016/j.jcat.2009.04.009
  31. Wang, Y., Hou, B., Chen, J., Jia, L., Li, D. and Sun, Y., "Ethylenediamine Modified Co/$SiO_2$ Sol-gel Catalysts for Non-ASF FT Synthesis of Middle Distillates," Catal. Commun., 10, 747-752 (2009). https://doi.org/10.1016/j.catcom.2008.10.043
  32. Kang, S. H., Ryu, J. H., Kim, J. H., Sai Prasad, P. S., Bae, J. W., Cheon, J. Y. and Jun, K. W., "ZSM-5 Supported Cobalt Catalyst for the Direct Production of Gasoline Range Hydrocarbons by Fischer-Tropsch Synthesis," Catal Lett, 141(10), 1464-1471(2011). https://doi.org/10.1007/s10562-011-0626-y
  33. Kang, S. H., Ryu, J. H., Kim, J. H., Jang, I. H., Kim, A. R., Han, G. Y., Bae, J. W. and Ha, K. S., "Role of ZSM5 Distribution on Co/$SiO_2$ Fischer-Tropsch Catalyst for the Production of $C_5-C_{22}$ Hydrocarbons," Energy Fuels, 26(9), 6061-6069(2012). https://doi.org/10.1021/ef301251d
  34. Kang, S. H., Ryu, J. H., Kim, J. H., Kim, H. S., Lee, C. G., Lee, Y. J. and Jun, K. W., "Fischer-Tropsch Synthesis of the Promoted Co/ZSM-5 Hybrid Catalysts for the Production of Gasoline Range Hydrocarbons," Modern Research in Catalysis, 3(3), 99-106(2014). https://doi.org/10.4236/mrc.2014.33013
  35. Ryu, J. H., Kang, S. H., Kim, J. H., Lee, Y. J. and Jun, K. W., "Fischer-Tropsch Synthesis on Co-$Al_2O_3$-(promoter)/ZSM5 Hybrid Catalysts for the Production of Gasoline Range Hydrocarbons," Korean J. Chem. Eng., 32(10), 1993-1998(2015). https://doi.org/10.1007/s11814-015-0046-6
  36. Kang, S. H., Ryu, J. H., Kim, J. H., Kim, H. S., Yang, H. C. and Chung, D. Y., "Catalytic Performance for Hydrocarbon Production from Syngas on the Promoted Co-Based Hybrid Catalysts: Influence of Pt Contents," Bulletin of Chemical Reaction Engineering & Catalysis, 12(3), 452-459(2017). https://doi.org/10.9767/bcrec.12.3.592.452-459
  37. Cho, J. M., Lee, S. R., Sun, J. A., Tsubaki, N. Jang, E. J. and Bae, J. W., "Highly Ordered Mesoporous $Fe_2O_3-ZrO_2$ Bimetal Oxides for an Enhanced CO Hydrogenation Activity to Hydrocarbons with Their Structural Stability," ACS Catal., 7(9), 5955-5964(2017). https://doi.org/10.1021/acscatal.7b01989
  38. Cho, J. M., Han, G. Y., Jeong, H. K., Roh, H. S. and Bae, J. W., "Effects of Ordered Mesoporous Bimodal Structures of Fe/KIT-6 for CO Hydrogenation Activity to Hydrocarbons," Chemical Engineering Journal, 354, 197-207(2018). https://doi.org/10.1016/j.cej.2018.07.205
  39. Park, Y. M., Lee, D. H., Lee, Y. J., Roh, H. S., Chung, C. H. and Bae, J. W., "Ordered Mesoporous $Co_3O_4$-$Al_2O_3$ Binary Metal Oxides for CO Hydrogenation to Hydrocarbons: Synergy Effects of Phosphorus Modifier for An Enhanced Catalytic Activity and Stability," ChemCatChem, 11(6), 1707-1721(2019). https://doi.org/10.1002/cctc.201802087
  40. Cho, J. M., Saravanan, K., Park, Y. M. and Bae, J. W., "Spatially Confined Cobalt Nanoparticles on Zirconium Phosphate-modified KIT-6 for An Enhanced Stability of CO Hydrogenation to Hydrocarbons," Fuel, 239, 547-558(2019). https://doi.org/10.1016/j.fuel.2018.11.047