DOI QR코드

DOI QR Code

A Study on Factors Influencing Consumer Purchase Intentions and Purposes in Direct-To-Consumer Genetic Test

소비자의뢰 유전자검사 구매 의도 및 목적에 영향을 미치는 요인 연구

  • Park, Imsu (Center of Water Policy Research, K-water) ;
  • Jung, Ilyoung (Division of Innovation and Growth Policy, STEPI)
  • 박임수 (한국수자원공사 물정책연구소) ;
  • 정일영 (과학기술정책연구원 혁신성장정책연구본부)
  • Received : 2019.04.17
  • Accepted : 2019.07.20
  • Published : 2019.07.28

Abstract

Innovation of genomics technology has recently been extended to Direct To Consumer Genetic Test (DTC-GT) which consumers purchase without requesting the service on medical institutes. In 2016, Korea has introduced the DTC-GT but the market size is small comparing to global market. This study analyzes consumers' purchase intentions and purposes and their influential factors based on 2018 consumer survey. According to the results of binominal and multinominal logistic regression, knowledge after purchase, attitude on medical care benefit, health status are statistically significant on purchase intentions. Purchase purposes are different on age group and related on medical care rather than health care. These results imply that DTC-GT is needed to improve consumer satisfaction, re-purchase and effective care service. This paper is expected to contribute on strategic directions for the new DTC-GT product development.

최근 유전자분석은 기술 진보와 대중화를 통해 소비자가 의료기관을 거치지 않고 직접 구매할 수 있는 소비자의뢰 유전자검사 시장으로까지 확대되고 있지만, 2016년부터 허용된 우리나라의 소비자의뢰 유전자검사 시장은 여전히 도입기에 머물러 있는 상태이다. 본 연구의 목적은 소비자의뢰 유전자검사 시장 및 서비스 확대를 위하여 구매의도 및 목적에 영향을 미치는 요인들을 밝혀보고자 하는 것이다. 이를 위해 일반국민을 대상으로 설문조사를 실시하였고, 이를 바탕으로 이항 및 다항로짓 회귀모형을 적용하여 분석을 시도하였다. 그 결과, 구매의도에 유의한 영향 미치는 변수로는 사용경험에 기반을 둔 지식, 치료 유익에 대한 긍정적 태도, 개인의 건강상태 등으로 나타났다. 구매목적은 연령대에 따라 차이가 존재하지만 치료목적이 더욱 두드러진 것으로 파악되었다. 특히, 검사결과에 대한 소비자만족도 향상을 통해 재구매 또는 효과적인 치료 및 건강관리와 연계할 수 있는 서비스의 개발이 필요하다. 본 연구는 향후 소비자의뢰 유전자검사 제품 개발의 전략적 방향설정에 기여할 것으로 기대된다.

Keywords

Table 1. DTC-GT products

DJTJBT_2019_v17n7_167_t0001.png 이미지

Table 2. Variables and Characteristics of respondents

DJTJBT_2019_v17n7_167_t0002.png 이미지

Table 3. Results of binomial regression: Model I-III

DJTJBT_2019_v17n7_167_t0003.png 이미지

Table 4. Results of binomial regression: Model IV

DJTJBT_2019_v17n7_167_t0004.png 이미지

Table 5. Results of multi-nomial regression

DJTJBT_2019_v17n7_167_t0005.png 이미지

References

  1. PRNewswire. (2018). Global $928 Million Consumer DNA Genetic Testing Market 2018-2023. https://www.prnewswire.com
  2. I. Jung, J. Kim, G. Jeong, Y. Lee & G. Kim. (2018). Research for Developing S&T Policy Agenda in the Era of Bio-economy: Current Trends and Development Plans of Genome Sequencing and Analysis, Sejong: Science and Technology Policy Institute.
  3. Y. Lee & I. Jung. (2019). Dilemma in Medical Regulatory Policy: Focusing on Expert Survey in Drug and Medical Device. The Journal of Convergence Society and Public Policy, 12(4) , 201-238. https://doi.org/10.37582/CSPP.2019.12.4.201
  4. H. Shim & J. Park. (2018), Regulatory Reform Plans and Strategies for the Emerging Digital Healthcare Industry. Journal of Regulation Studies, 27(1), 33-65.
  5. M. Lee et al. (2016). Bio-health Innovation System and the Role of Government , Sejong : Science and Technology Policy Institute.
  6. S. Gollust et al. (2012). Motivations and Perceptions of Early Adopters of Personalized Genomics: Perspectives from Research Participants. Public Health Genomics, 15(1), 22-30. DOI : 10.1159/000327296
  7. K. Payne et al. (2011). Valuing Pharmacogenetic Testing Services: A Comparison of Patients' and Health Care Professionals' Preferences, Value in Health, 14(1), 121-134. DOI : 10.1016/j.jval.2010.10.007
  8. G. Jeong et al. (2014). Status and Challenges of Genome Based Personalized Medicine , Sejong : Science and Technology Policy Institute.
  9. A. Brookes & P. Robinson. (2015). Human Genotype-Phenotype Database: Aims, Challenges and Opportunities. Nature Reviews Genetics, 16(12), 702-715. DOI : 10.1038/nrg3932
  10. S. Hogarth & P. Saukko. (2017). A Market in the Making: the Past, Present and Future of Direct-To-Consumer Genomics. New Genetics and Society, 36(3), 197-208. DOI : 10.1080/14636778.2017.1354692
  11. A. Regalado. (2018). 2017 was the Year Consumer DNA Testing Blew Up, MIT Technology Review. https://www.technologyreview.com
  12. G. Jeong et al. (2016). Development of a Simulation Model for Analyzing the Impact of Promoting Innovative New Products , Sejong. : Science and Technology Policy Institute,
  13. M. Najafzadeh et al. (2013). Genomic Testing to Determine Drug Response: Measuring Preferences of the Public and Patients Using Discrete Choice Experiment. BMC Health Services Research, 13(1), 454. DOI : 10.1186/1472-6963-13-454
  14. F. Severin, W. Hess, J. Schmidtke, A. Muhlbacher & W. Rogowski. (2015). Value Judgements for Priority Setting Criteria in Genetic Testing: A Discrete Choice Experiment, Health Policy, 119(2), 164-173. DOI : 10.1016/j.healthpol.2014.04.013
  15. G. Jeong. (2017). Assessment of Direct to Consumer Genetic Testing policy in Korea Based on Consumer Preference. Public Health Genomics, 20(3), 166-173. DOI : 10.1159/000479290
  16. D. Midgley & G. Dowling. (1978). Innovativeness: The Concept and its Measurement. Journal of Consumer Research, 4(4), 229-242. DOI : 10.1086/208701
  17. L. Jamieson & F. Bass. (1989). Adjusting Stated Intention Measures to Predict Trial Purchase of New Products: A Comparison of Models and Methods. Journal of Marketing Research, 26(3), 336-345. DOI : 10.1177/002224378902600307
  18. D. Morrison. (1979). Purchase Intentions and Purchase Behavior. Journal of Marketing, 43(2), 65-74. DOI : 10.2307/1250742
  19. K. Murray. (1991). A Test of Services Marketing Theory: Consumer Information Acquisition Activities. Journal of Marketing, 55(1), 10-25. DOI : 10.2307/1252200
  20. A. Rao & K. Monroe. (1988). The Effect of Price, Brand Name, and Store Name on Buyers' Perceptions of Product Quality: An Integrative Review. Journal of Marketing Research, 26(3), 351-357. DOI : 10.2307/3172907
  21. M. Brucks. (1985). The Effect of Product Class Knowledge in Information Search Behavior. Journal of Consumer Research, 12(1), 1-16 . DOI : 10.1086/209031
  22. J. Alba & J. Hutchinson. (1987). Dimension of Expertise. Journal of Consumer Research, 13(4), 411-454. DOI : 10.1086/209080
  23. S. Choi & S. Kim. (2017). A Study on the Factors Affecting the Purchase of Healthcare Smart Bands. Journal of the Korea Convergence Society, 8(7), 175-181. DOI : 10.15207/JKCS.2017.8.7.175
  24. K. Lee & S. Yi. (2019). The Effect of Consumption Value and Creating Shared Values on Purchase Intention. Journal of Convergence for Information Technology, 9(1), 105-115. DOI : 10.22156/CS4SMB.2019.9.1.105
  25. K. Y. Yim. (2018). The Effect of Sports Brand Self-Image Congruity and Affect on Brand Attitude and Purchase Intension. Journal of the Korea Convergence Society, 9(12), 151-157. DOI : 10.15207/JKCS.2018.9.12.151
  26. H. Kim & E. Kang. (2018). The Effects of Advertisement Properties in Cosmetics Convergence Advertisement Using PPL on Brand Attitude and Purchasing Intension. Journal of Convergence for Information Technology, 8(4), 87-97. DOI : 10.22156/CS4SMB.2018.8.4.087
  27. M. Fishbein & I. Ajzen. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Boston : Addison-Wesley.
  28. N. Sheth, B. Newman & B. Gross. (1991). Why We Buy What We Buy: A Theory of Consumption Values. Journal of Business Research, 22(2), 159-170. DOI : 10.1016/0148-2963(91)90050-8
  29. N. Malhotra. (1984). The Use of Linear Logit Models in Marketing Research. Journal of Marketing Research, 2(1), 20-31. DOI : 10.1177/002224378402100103
  30. J. Wooldridge. (2010). Econometric Analysis of Cross Section and Panel Data, MIT press, Cambridge.
  31. D. McFadden. (1974). Conditional Logit Analysis of Qualitative Choice Behavior in Frontiers in Econometrics, New York : Academic Press.
  32. D. Hosmer & S. Lemeshow. (2000). Applied Logistic Regression, New York : Jone Wiley & Sons.