DOI QR코드

DOI QR Code

Association between Thyroid-Related Hormones and Cognitive Function in Patients with Alzheimer's Disease and Mild Cognitive Impairment

알츠하이머병 및 경도인지장애 환자에서 갑상선 관련 호르몬과 인지기능과의 상관관계

  • Park, Da Yun (Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine) ;
  • Kim, Hyun (Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine) ;
  • Lee, Kang Joon (Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine)
  • 박다윤 (인제대학교 의과대학 일산백병원 정신건강의학교실) ;
  • 김현 (인제대학교 의과대학 일산백병원 정신건강의학교실) ;
  • 이강준 (인제대학교 의과대학 일산백병원 정신건강의학교실)
  • Received : 2019.04.09
  • Accepted : 2019.06.09
  • Published : 2019.06.30

Abstract

Objectives : The association between thyroid-related hormones and cognitive function has been controversial. The purpose of this study is to compare the levels of thyroid-related hormones in patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). Furthermore, we investigated the relationship between thyroid-related hormones and cognitive function. Methods : From January 2011 to December 2018, we retrospectively reviewed 105 patients who were diagnosed with AD and MCI by visiting a dementia clinic at Ilsan Paik Hospital. Thyroid-related hormones [triiodothyronine (T3), thyroxine (T4), and thyroid stimulating hormone (TSH)] was measured using chemiluminescent immunoassay. An independent sample t-test was performed to analyze the mean value of thyroid-related hormones in patients of AD and MCI. To investigate whether thyroid-related hormones correlate significantly with Global deterioration scale (GDS), Clinical dementia rating (CDR) and scores of each The Korean version of the consortium to establish a registry for Alzheimer's disease items, we conducted a partial correlation analysis with geriatric depression scale-Korean version (GDS-K) scores as covariates. Results : There was no significant difference in the mean serum T3, T4 and TSH levels between patients of the AD and the MCI, but the Construction Praxis Test (CPT) showed a significant positive correlation with the serum TSH concentration (p-value=0.004). Conclusions : In our study, the positive correlation between serum TSH level and the CPT associated with executive function was found to be helpful in understanding the association between thyroid-related hormones and the pathophysiology of dementia. Prospective studies in regard of the pathophysiology of thyroid-related hormones on cognitive function will be necessary in the future.

연구목적 갑상선관련 호르몬과 인지기능의 상관 유무는 논란이 되고 있다. 알츠하이머병과 경도인지장애 환자에서 갑상선관련 호르몬 농도에 차이가 있는지 비교해 보고, 나아가 갑상선관련 호르몬 농도가 인지기능의 어떠한 영역과 관련이 있는지에 대해 연구해보고자 하였다. 방 법 2011년 1월부터 2018년 12월까지 기억력 저하를 주소로 일산백병원 정신건강의학과 치매클리닉을 방문하여 알츠하이머병(NINCDS-ADRDA 진단기준)과 경도인지장애(Petersen 진단기준) 으로 진단된 105명의 환자를 대상으로 한 후향적 연구이다. 갑상선관련 호르몬[삼요오드티로닌(Triiodothyronine, T3), 티록신(Thyroxine, T4), 갑상선 자극 호르몬(Thyroid stimulating hormone, TSH)]의 측정은 화학발광면역측정법을 사용하여 검사하였다. 알츠하이머병군과 경도인지장애군 간의 갑상선관련 호르몬의 평균치 분석을 위하여 독립표본 t-검정을 시행하였다. 갑상선관련 호르몬이 전반적 퇴화 척도(Global deterioration scale, GDS), 치매임상평가척도(Clinical dementia rating, CDR) 및 한국형 임상치매평가척도(The Korean version of the consortium to establish a registry for Alzheimer's disease, CERAD-K)의 각 항목 별 점수들과 유의한 상관이 있는지 알아보기 위하여 한국판 노인우울척도(Geriatric depression scale-Korean version, GDS-K)를 통제변수로하여 편상관분석을 시행하였다. 결 과 총 105명의 환자 중 알츠하이머병군은 74명, 경도인지장애군은 31명이었다. 알츠하이머병군과 경도인지장애군 간 혈청 T3, T4, TSH 농도의 평균은 모두 유의한 차이가 없었으나, CERAD-K 항목 중 구성행동 검사(Construction praxis test, CPT)가 혈청 TSH 농도와 유의한 양의 상관 관계를 보였다(p-value=0.004). 결 론 본 연구에서 실행기능과 연관된 CPT가 혈청 TSH 농도와 유의한 양의 상관 관계를 보인 것은 갑상선관련 호르몬과 치매의 병태생리와의 연관성에 대한 이해에 도움을 줄 수 있다고 생각한다. 향후 갑상선관련 호르몬이 인지기능에 미치는 병태생리 기전에 관한 전향적 연구들이 필요할 것으로 사료된다.

Keywords

Table 1. Clinical characteristics in Alzheimer’s disease and mild cognitive impairment group

JSSCBG_2019_v27n1_60_t0001.png 이미지

Table 2. CERAD-K scores in Alzheimer’s disease and mild cognitive impairment group

JSSCBG_2019_v27n1_60_t0002.png 이미지

Table 3. T3, T4, TSH level in Alzheimer’s disease and mild cognitive impairment group

JSSCBG_2019_v27n1_60_t0003.png 이미지

Table 4. Correlation analysis between T3, T4, TSH level and CERAD-K scores*

JSSCBG_2019_v27n1_60_t0004.png 이미지

References

  1. Statistics Korea. Korean Statistical Information Service: Population [Internet]. Daejeon (KR): Statistics Korea; c2017 [cited 2017 Jun 15]. Available from: http://kosis.kr/statisticsList/statisticsList_01List.jsp?vwcd=MT_ZTITLE&parentId=A.
  2. Henderson AS. Epidemiology of dementia disorders. Adv Neurol 1990;51:15-25.
  3. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999;56:303-308. https://doi.org/10.1001/archneur.56.3.303
  4. Tan ZS, Beiser A, Vasan RS, Au R, Auerbach S, Kiel DP, Wolf PA, Seshadri S. Thyroid function and the risk of Alzheimer disease: the Framingham Study. Arch Intern Med 2008;168:1514-1520. https://doi.org/10.1001/archinte.168.14.1514
  5. Chaker L, Wolters FJ, Bos D, Korevaar TI, Hofman A, van der Lugt A, Koudstaal PJ, Franco OH, Dehghan A, Vernooij MW, Peeters RP, Ikram MA. Thyroid function and the risk of dementia: the Rotterdam Study. Neurology 2016;87:1688-1695. https://doi.org/10.1212/WNL.0000000000003227
  6. Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, Saunders AM, Hardy J. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proc Natl Acad Sci USA 2004;101:284-289. https://doi.org/10.1073/pnas.2635903100
  7. Freemantle E, Vandal M, Tremblay-Mercier J, Tremblay S, Blachere JC, Begin ME, Brenna JT, Windust A, Cunnane SC. Omega-3 fatty acids, energy substrates, and brain function during aging. Prostaglandins Leukot Essent Fatty Acids 2006;75:213-220. https://doi.org/10.1016/j.plefa.2006.05.011
  8. Hogervorst E, Huppert F, Matthews FE, Brayne C. Thyroid function and cognitive decline in the MRC Cognitive Function and Ageing Study. Psychoneuroendocrinology 2008;33:1013-1022. https://doi.org/10.1016/j.psyneuen.2008.05.008
  9. Toft AD, Boon NA. Thyroid disease and the heart. Heart 2000;84:455-460. https://doi.org/10.1136/heart.84.4.455
  10. Hak AE, Pols HA, Visser TJ, Drexhage HA, Hofman A, Witteman JC. Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann Intern Med 2000;132:270-278.
  11. Auer J, Scheibner P, Mische T, Langsteger W, Eber O, Eber B. Subclinical hyperthyroidism as a risk factor for atrial fibrillation. Am Heart J 2001;142:838-842. https://doi.org/10.1067/mhj.2001.119370
  12. Breteler MM. Vascular risk factors for Alzheimer's disease: an epidemiologic perspective. Neurobiol Aging 2000;21:153-160. https://doi.org/10.1016/S0197-4580(99)00110-4
  13. Kivipelto M, Helkala EL, Hanninen T, Laakso MP, Hallikainen M, Alhainen K, Soininen H, Tuomilehto J, Nissinen A. Midlife vascular risk factors and Alzheimer's disease in later life: longitudinal, population based study. BMJ 2001;322:1447-1451. https://doi.org/10.1136/bmj.322.7300.1447
  14. Begin ME, Langlois MF, Lorrain D, Cunnane SC. Thyroid function and cognition during aging. Curr Gerontol Geriatr Res 2008:474868.
  15. Diez JJ, Molina I, Ibars MT. Prevalence of thyroid dysfunction in adults over age 60 years from an urban community. Exp Clin Endocrinol Diabetes 2003;111:480-485. https://doi.org/10.1055/s-2003-44707
  16. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, Braverman LE. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab 2002;87:489-499. https://doi.org/10.1210/jcem.87.2.8182
  17. Lopez O, Huff FJ, Martinez AJ, Bedetti CD. Prevalence of thyroid abnormalities is not increased in Alzheimer's disease. Neurobiol Aging 1989;10:247-251. https://doi.org/10.1016/0197-4580(89)90058-4
  18. Ganguli M, Burmeister LA, Seaberg EC, Belle S, DeKosky ST. Association between dementia and elevated TSH: a community-based study. Biol Psychiatry 1996;40:714-725. https://doi.org/10.1016/0006-3223(95)00489-0
  19. van Osch LA, Hogervorst E, Combrinck M, Smith AD. Low thyroid-stimulating hormone as an independent risk factor for Alzheimer disease. Neurology 2004;62:1967-1971. https://doi.org/10.1212/01.WNL.0000128134.84230.9F
  20. de Jongh RT, Lips P, van Schoor NM, Rijs KJ, Deeg DJ, Comijs HC, Kramer MH, Vandenbroucke JP, Dekkers OM. Endogenous subclinical thyroid disorders, physical and cognitive function, depression, and mortality in older individuals. Eur J Endocrinol 2011;165:545-554. https://doi.org/10.1530/EJE-11-0430
  21. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984;34:939-944. https://doi.org/10.1212/WNL.34.7.939
  22. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Backman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, de Leon M, De- Carli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, Jorm A, Ritchie K, van Duijn C, Visser P, Petersen RC. Mild cognitive impairment-beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 2004;256:240-246. https://doi.org/10.1111/j.1365-2796.2004.01380.x
  23. Lee JH, Lee KU, Lee DY, Kim KW, Jhoo JH, Lee KH. Development of the Korean version of the consortium to establish a registry for alzheimer's disease (CERAD) Assessment packet (CERAD-K): Clinical and Neuropsychological assessment batteries. J Gernotol B Psyhol Sci 2002;57:47-53. https://doi.org/10.1093/geronb/57.1.P47
  24. Park JH, Kwon YC. Standardization of Korean Version of Mini-Mental State Examination (MMSE-K) Part I: Development of the Test for the Elderly. J Korean Neuropsychiatr Assoc 1989;28:125-135.
  25. Morris JC. The clinical Dementia rating (CDR): current version and scoring rules. Neurology 1993;43:2412-2414. https://doi.org/10.1212/WNL.43.1_Part_1.241-a
  26. Reisberg B, Ferris SH, de Leon MJ, Crook T. Global Deterioration scale (GDS). Psychopharmacol Bull 1988;24:661-663.
  27. Bae JN, Cho MJ. Development of the Korean version of the Geriatric Depression scale and its form among elderly psychiatric patients. J psychosom Res 2004;57:297-305. https://doi.org/10.1016/j.jpsychores.2004.01.004
  28. Quinlan P, Nordlund A, Lind K, Gustafson D, Edeman A, Wallin A. Thyroid hormones are associated with poorer cognition in mild cognitive impairment. Dement Geriatr Cogn Disord 2010;30:205-211. https://doi.org/10.1159/000319746
  29. Hu Y, Wang ZC, Guo QH, Cheng W, Chen YW. Is thyroid status associated with cognitive impairment in elderly patients in China? BMC Endocr Disord 2016;16:11. https://doi.org/10.1186/s12902-016-0092-z
  30. Latasa MJ, Belandia B, Pascual A. Thyroid hormones regulate ${\beta}$-amyloid gene splicing and protein secretion in neuroblastoma cells. Endocrinology 1998;139:2692-2698. https://doi.org/10.1210/endo.139.6.6033
  31. de Jong FJ, Masaki K, Chen H, Remaley AT, Breteler MM, Petrovitch H, White LR, Launer LJ. Thyroid function, the risk of dementia and neuropathologic changes: the Honolulu- Asia aging study. Neurobiol Aging 2009;30:600-606. https://doi.org/10.1016/j.neurobiolaging.2007.07.019
  32. Mitchell TW, Mufson EJ, Schneider JA, Cochran EJ, Nissanov J, Han LY, Bienias JL, Lee VM, Trojanowski JQ, Bennett DA, Arnold SE. Parahippocampal tau pathology in healthy aging, mild cognitive impairment, and early Alzheimer's disease. Ann Neurol 2002;51:182-189. https://doi.org/10.1002/ana.10086
  33. Gussekloo J, van Exel E, de Craen AJ, Meinders AE, Frolich M, Westendorp RG. Thyroid status, disability and cognitive function, and survival in old age. JAMA 2004;292:2591-2599. https://doi.org/10.1001/jama.292.21.2591
  34. Roberts LM, Pattison H, Roalfe A, Franklyn J, Wilson S, Hobbs FD, Parle JV. Is subclinical thyroid dysfunction in the elderly associated with depression or cognitive dysfunction? Ann Intern Med 2006;145:573-581. https://doi.org/10.7326/0003-4819-145-8-200610170-00006
  35. Annerbo S, Kivipelto M, Lokk J. A prospective study on the development of Alzheimer's disease with regard to thyroidstimulating hormone and homocysteine. Dement Geriatr Cogn Disord 2009;28:275-280. https://doi.org/10.1159/000242439
  36. Kim SH, Choi HJ, Lee HR. Thyroid status and dementia in old age. J Korean Acad Fam Med 2007;28:173-178.
  37. Ceresini G, Lauretani F, Maggio M, Ceda GP, Morganti S, Usberti E, Chezzi C, Valcavi R, Bandinelli S, Guralnik JM, Cappola AR, Valenti G, Ferrucci L. Thyroid function abnormalities and cognitive impairment in elderly people: results of the Invecchiare in Chianti study. J Am Geriatr Soc 2009;57:89-93. https://doi.org/10.1111/j.1532-5415.2008.02080.x
  38. Kalmijn S, Mehta KM, Pols HA, Hofman A, Drexhage HA, Breteler MM. Subclinical hyperthyroidism and the risk of dementia. The Rotterdam study. Clin Endocrinol (Oxf) 2000;53:733-737. https://doi.org/10.1046/j.1365-2265.2000.01146.x
  39. Grigorova M, Sherwin BB. Thyroid hormones and cognitive functioning in healthy, euthyroid women: a correlational study. Horm Behav 2012;61:617-622. https://doi.org/10.1016/j.yhbeh.2012.02.014
  40. Lee SN, Jin HY, Moon SW. Thyroid Hormones, Cognitive Impairment, Depression and Subjective Memory Complaint in Community-Dwelling Elders with Questionable Dementia in Korea. Korean J Biol Psychiatry 2014;21:175-181.
  41. Wahlin A, Bunce D, Wahlin TB. Longitudinal evidence of the impact of normal thyroid stimulating hormone variations on cognitive functioning in very old age. Psychoneuroendocrinology 2005;30:625-637. https://doi.org/10.1016/j.psyneuen.2005.01.010
  42. Zec RF. Neuropsychological functioning in Alzheimer's disease. In: Parks RW, Zec RF, Wilson RS, editors. Neuropsychology of Alzheimer's disease and other dementias. New York: Oxford University Press;1993. p.3-80.
  43. Kinoshita K, Kawashima K, Kawashima Y, Fukuchi I, Yamamura M, Matsuoka Y. Effect of TA-0910, a novel thyrotropin-releasing hormone analog, on in vivo acetylcholine release and turnover in rat brain. Jpn J Pharmacol 1996;71:139-145. https://doi.org/10.1254/jjp.71.139
  44. Videla LA, Sir T, Wolff C. Increased lipid peroxidation in hyperthyroid patients: suppression by propylthiouracil treatment. Free Radic Res Commun 1988;5:1-10. https://doi.org/10.3109/10715768809068553
  45. Chan RS, Huey ED, Maecker HL, Cortopassi KM, Howard SA, Iyer AM, McIntosh LJ, Ajilore OA, Brooke SM, Sapolsky RM. Endocrine modulators of necrotic neuron death. Brain Pathol 1996;6:481-491. https://doi.org/10.1111/j.1750-3639.1996.tb00877.x