DOI QR코드

DOI QR Code

Carbon Reduction by and Quantitative Models for Landscape Tree Species in Southern Region - For Camellia japonica, Lagerstroemia indica, and Quercus myrsinaefolia -

남부지방 조경수종의 탄소저감과 계량모델 - 동백나무, 배롱나무 및 가시나무를 대상으로 -

  • Jo, Hyun-Kil (Dept. of Ecological Landscape Architecture Design, Kangwon National University) ;
  • Kil, Sung-Ho (Dept. of Ecological Landscape Architecture Design, Kangwon National University) ;
  • Park, Hye-Mi (Dept. of Ecological Landscape Architecture Design, Kangwon National University) ;
  • Kim, Jin-Young (Dept. of Ecological Landscape Architecture Design, Kangwon National University)
  • 조현길 (강원대학교 생태조경디자인학과) ;
  • 길승호 (강원대학교 생태조경디자인학과) ;
  • 박혜미 (강원대학교 생태조경디자인학과) ;
  • 김진영 (강원대학교 생태조경디자인학과)
  • Received : 2019.02.26
  • Accepted : 2019.05.24
  • Published : 2019.06.30

Abstract

This study quantified, through a direct harvesting method, storage and annual uptake of carbon from open-grown trees for three landscape tree species frequently planted in the southern region of Korea, and developed quantitative models to easily estimate the carbon reduction by tree growth for each species. The tree species for the study included Camellia japonica, Lagerstroemia indica, and Quercus myrsinaefolia, for which no information on carbon storage and uptake was available. Ten tree individuals for each species (a total of 30 individuals) were sampled considering various stem diameter sizes at given intervals. The study measured biomass for each part of the sample trees to quantify the total carbon storage per tree. Annual carbon uptake per tree was computed by analyzing the radial growth rates of the stem samples at breast height or ground level. Quantitative models were developed using stem diameter as an independent variable to easily calculate storage and annual uptake of carbon per tree for study species. All the quantitative models showed high fitness with $r^2$ values of 0.94-0.98. The storage and annual uptake of carbon from a Q. myrsinaefolia tree with dbh of 10 cm were 24.0 kg and 4.5 kg/yr, respectively. A C. japonica tree and L. indica tree with dg of 10 cm stored 11.2 kg and 8.1 kg of carbon and annually sequestered 2.6 kg and 1.2 kg, respectively. The above-mentioned carbon storage equaled the amount of carbon emitted from the gasoline consumption of about 42 L for Q. myrsinaefolia, 20 L for C. japonica, and 14 L for L. indica. A tree with the diameter size of 10 cm annually offset carbon emissions from gasoline use of approximately 8 L for Q. myrsinaefolia, 5 L for C. japonica, and 2 L for L. indica. The study pioneers in quantifying biomass and carbon reduction for the landscape tree species in the southern region despite difficulties in direct cutting and root digging of the planted trees.

본 연구는 남부지방에 흔히 식재하는 3개 조경수종을 대상으로 직접수확법을 통해 개방 생장하는 개체별 탄소저장 및 흡수를 계량화하고, 수종별 생장에 따른 탄소저감을 용이하게 산정하는 계량모델을 개발하였다. 연구 수종은 탄소저감 정보가 부재하는 동백나무, 배롱나무, 가시나무 등이었다. 유목에서 성목에 이르는 일정 간격의 줄기직경 규격을 고려하여 수종별로 10개체씩, 총 30개체의 수목을 구입하였다. 그리고 근굴취를 포함하는 직접 벌목을 통해 해당 개체의 부위별 및 전체 생체량을 실측하고, 탄소저장량을 산정하였다. 수종별 흉고직경 내지 근원직경의 줄기 원판을 채취하여 직경생장률을 분석하고, 연간 탄소흡수량을 산출하였다. 줄기직경을 독립변수로 생장에 따른 수종별 단목의 탄소저장과 연간 탄소흡수를 산정하는 활용 용이한 계량모델을 도출하였다. 이들 계량모델의 $r^2$은 0.94~0.98로서 적합도가 높았다. 흉고직경 10cm인 가시나무 단목의 탄소저장량과 연간 탄소흡수량은 각각 24.0kg/주 및 4.5kg/주/년이었다. 근원직경 10cm인 동백나무와 배롱나무의 경우는 각각 11.2kg/주 및 2.6kg/주/년, 8.1kg/주 및 1.2kg/주/년이었다. 이 탄소저장량은 가시나무 약 42L, 동백나무 20L, 배롱나무 14L의 휘발유 소비에 따른 탄소 배출량에 상당하였다. 또한, 상기한 직경의 가시나무, 동백나무 및 배롱나무 한 그루는 매년 각각 8L, 5L, 2L의 휘발유 소비에 따른 탄소 배출량을 상쇄하는 역할을 담당하였다. 본 연구는 식재 수목의 직접 벌목과 근굴취의 난이성을 극복하고, 남부지방 대상 조경수종의 생체량 및 탄소저감을 계량화하는 새로운 초석을 마련하였다.

Keywords

References

  1. Chow, P. and G. L. Rolfe(1989) Carbon and hydrogen contents of short rotation biomass of five hardwood species. Wood and Fiber Science 21(1): 30-36.
  2. Dirr, M. A.(2009) Manual of Woody Landscape Plants. Champaign, IL: Stipes Publishing Company.
  3. DMC(Daegu Metropolitan City)(2017) Urban Parks in Daegu.
  4. Jo, H. K. and D. H. Cho(1998) Annual $CO_2$ uptake by urban popular landscape tree species. Journal of the Korean Institute of Landscape Architecture 26(2): 38-53.
  5. Jo, H. K. and E. G. McPherson(1995) Carbon storage and flux in urban residential greenspace. Journal of Environmental Management 45: 109-133. https://doi.org/10.1006/jema.1995.0062
  6. Jo, H. K. and H. M. Park(2017) Changes in growth rate and carbon sequestration by age of landscape trees. Journal of the Korean Institute of Landscape Architecture 45(5): 97-104. https://doi.org/10.9715/KILA.2017.45.5.097
  7. Jo, H. K. and T. W. Ahn(2000) Indicators of carbon storage and uptake by tree growth in natural ecosystem. Korean Journal of Environment and Ecology 14(3): 175-182.
  8. Jo, H. K. and T. W. Ahn(2001) Annual $CO_2$ uptake and atmospheric purification by urban coniferous trees: For Pinus densiflora and Pinus koraiensis. Korean Journal of Environment and Ecology 15(2): 118-124.
  9. Jo, H. K. and T. W. Ahn(2012) Carbon storage and uptake by deciduous tree species for urban landscape. Journal of the Korean Institute of Landscape Architecture 40(5): 160-168. https://doi.org/10.9715/KILA.2012.40.5.160
  10. Jo, H. K.(2002) Impacts of urban greenspace on offsetting carbon emissions for middle Korea. Journal of Environmental Management 64: 115-126. https://doi.org/10.1006/jema.2001.0491
  11. Jo, H. K., J. Y. Kim and H. M. Park(2013) Carbon storage and uptake by evergreen trees for urban landscape: For Pinus densiflora and Pinus koraiensis. Korean Journal of Environment and Ecology 27(5): 571-578. https://doi.org/10.13047/KJEE.2013.27.5.571
  12. Jo, H. K., J. Y. Kim and H. M. Park(2014) Carbon reduction effects of urban landscape trees and development of quantitative models: For five native species. Journal of the Korean Institute of Landscape Architecture 42(5): 13-21. https://doi.org/10.9715/KILA.2014.42.5.013
  13. Jo, H. K., Y. H. Yun and K. E. Lee(1995) Atmospheric $CO_2$ sequestration by urban greenspace - In the case of Chuncheon. Journal of the Korean Institute of Landscape Architecture 23(3): 80-93.
  14. KFRI(Korea Forest Research Institute)(2007) Survey Manual for Forest Biomass and Soil Carbon. Seoul.
  15. KFRI(Korea Forest Research Institute)(2010a) Greenhouse Gas Inventory of Urban Green Areas: In Case of Seoul Metropolis. Research Report 10-19.
  16. KFRI(Korea Forest Research Institute)(2010b) Carbon Emission Coefficients of Major Tree Species to Inventory Greenhouse Gases from Forests. Research Report 10-25.
  17. KFRI(Korea Forest Research Institute)(2012) A Role of Urban Forests as a Carbon Uptake Source. Research Report 20.
  18. KFRI(Korea Forest Research Institute)(2014) Carbon Emission Factors and Biomass Allometric Equations by Species in Korea. Research Report 44-70.
  19. KFS(Korea Forest Service)(2014) Street Trees in Korea. Daejeon.
  20. KIAST(Korean Institute of Agricultural Science and Technology) (2000) Methods of Analysis for Soil and Plants. Suwon.
  21. KILA(Korean Institute of Landscape Architecture)(2016) Landscape Design Standards. Seoul.
  22. McGovern, M. and J. Pasher(2016) Canadian urban tree canopy cover and carbon sequestration status and change 1990-2012. Urban Forestry & Urban Greening 20: 227-232. https://doi.org/10.1016/j.ufug.2016.09.002
  23. McPherson, E. G.(1998) Atmospheric carbon dioxide reduction by Sacramento's urban forest. Journal of Arboriculture 24(4): 215-223.
  24. Nowak, D. J. and D. E. Crane(2002) Carbon storage and sequestration by urban trees in the USA. Environmental Pollution 116: 381-389. https://doi.org/10.1016/S0269-7491(01)00214-7
  25. Nowak, D. J.(1994) Atmospheric carbon dioxide reduction by Chicago's urban forest. In E. G. McPherson, D. J. Nowak and R. A. Rowntree, eds., Chicago's Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project. General Technical Report NE-186. Radnor, PA: USDA Forest Service, Northeastern Forest Experiment Station. pp. 83-94.
  26. Nowak, D. J., E. J. Greenfield, R. E. Hoehn and E. Lapoint(2013) Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental Pollution 178: 229-236. https://doi.org/10.1016/j.envpol.2013.03.019
  27. Park, E. J. and K. Y. Kang(2010) Estimation of C storage and annual $CO_2$ uptake by street trees in Gyeonggi-do. Korean Journal of Environment and Ecology 24(5): 591-600.
  28. Park, I. H. and S. M. Lee(1990) Biomass and net production of Pinus densiflora natural forests of four local forms in Korea. Journal of Korean Forestry Society 79(2): 196-204.
  29. Pingrey, D. W.(1976) Forest products energy overview. In Energy and the Wood Products Industry. Madison, WI: Forest Products Research Society. pp. 1-14.
  30. Rowntree, R. A. and D. J. Nowak(1991) Quantifying the role of urban forests in removing atmospheric carbon dioxide. Journal of Arboriculture 17(10): 269-275.
  31. Song, C. Y., K. S. Chang, K. S. Park and S. W. Lee(1997) Analysis of carbon fixation in natural forests of Quercus mongolica and Quercus variabilis. Journal of Korean Forestry Society 86(1): 35-45.
  32. UNFCCC(United Nations Framework Convention on Climate Change) (2006) Report of the Conference of the Parties Serving as the Meeting of the Parties to the Kyoto Protocol. Montreal.
  33. Whittaker, R. H. and P. L. Marks(1975) Methods of assessing terrestrial productivity. In H. Lieth and R. H. Whittaker, eds., Primary Productivity of the Biosphere. New York: Springer-Verlag. pp. 55-118.
  34. https://www.gir.go.kr
  35. http://www.itreetools.org
  36. http://www.law.go.kr