DOI QR코드

DOI QR Code

Preparation and Characterization of SPAES/SPVdF-co-HFP Blending Membranes for Polymer Electrolyte Membrane Fuel Cells

고분자 전해질 연료전지용 술폰화된 폴리(아릴렌 이써 설폰)/SPVdF-co-HFP 브렌딩 멤브레인의 제조 및 특성 분석

  • PARK, CHUL JIN (Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University) ;
  • KIM, AE RHAN (R&D Center for CANUTECH, Business Incubation Center, Chonbuk National University) ;
  • YOO, DONG JIN (Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University)
  • 박철진 (전북대학교 대학원 공과대학교 에너지저장.변환공학과 및 수소.연료전지 연구센터) ;
  • 김애란 (전북대학교 창업보육센터내 캔유텍 연구개발센터) ;
  • 유동진 (전북대학교 대학원 공과대학교 에너지저장.변환공학과 및 수소.연료전지 연구센터)
  • Received : 2019.06.01
  • Accepted : 2019.06.30
  • Published : 2019.06.30

Abstract

In this work, preparation and characterizations of hybrid membranes containing sulfonated poly(arylene ether sulfone) (SPES) and sulfonated poly(vinylidene fluoride-co-hexafluoropropylene) (SPVdF-co-HFP) (20, 30 or 40 wt%) were carried out. The structure of hybrid membranes was confirmed using X-ray diffraction (XRD) analysis and the Fourier transform infrared (FT-IR) spectroscopy. The prepared SPAES/SPVdF-30 membrane exhibits higher ionic conductivity of 68.9 mS/cm at $90^{\circ}C$ and 100% RH. Besides, the other studies showed that the hybrid membrane has good oxidation stability, thermal stability, and mechanical stability. Thus, we believe that the prepared hybrid membrane is suitable for the development of membranes for fuel cell applications.

Keywords

SSONB2_2019_v30n3_227_f0001.png 이미지

Fig. 1. Chemical structures of (a) SPAES and (b) SPVdF-co-HFP

SSONB2_2019_v30n3_227_f0002.png 이미지

Fig. 2. FT-IR spectrum of (a) SPAES, (b) SPVdF-co-HFP, (c) SPAES/SPVdF-20, (d) SPAES/SPVdF-30, and (e) SPAES/SPVdF-40

SSONB2_2019_v30n3_227_f0003.png 이미지

Fig. 3. XRD patterns of (a) SPAES, (b) SPVdF-co-HFP, and (c) SPAES/SPVdF-30

SSONB2_2019_v30n3_227_f0004.png 이미지

Fig. 4. Water contact angles of SPAES and hybrid membranes

SSONB2_2019_v30n3_227_f0005.png 이미지

Fig. 5. TGA patterns of SPAES, SPVdF-co-HFP and hybrid membranes

SSONB2_2019_v30n3_227_f0006.png 이미지

Fig. 6. Stress-strain behaviors of SPAES, SPVdF-co-HFP and hybrid membranes

SSONB2_2019_v30n3_227_f0007.png 이미지

Fig. 7. Ionic conductivity plots of SPVdF-co-HFP, and hybird membranes (RH 100%)

Table 1. Oxidation stability and thermal stability of SPAES, SPVdF-co-HFP, and hybrid membranes

SSONB2_2019_v30n3_227_t0001.png 이미지

Table 2. Water content (WC), ion exchange capacity (IEC), and ionic conductivity of SPAES, SPVdF-co-HFP and hybrid membranes

SSONB2_2019_v30n3_227_t0002.png 이미지

References

  1. S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, "Review of the proton exchange membranes for fuel cell applications", Int. J. Hydrog. Energy, Vol. 35. No. 17, 2010, pp. 9349-9384, doi: https://doi.org/doi:10.1016/j.ijhydene.2010.05.017.
  2. M. E. Scofield, H. Liu, and S. S. Wong, "A concise guide to sustainable PEMFCs: recent advances improving both oxygen reduction catalysts and proton exchange membranes", Chem. Soc. Rev., Vol. 44, No. 16. 2015, pp. 5836-5860, doi: https://doi.org/10.1039/C5CS00302D.
  3. S. H. Park, J. S. Park, S. D. Yim, S. H. Park, Y. M. Lee, and C. S. Kim, "Preparation of organic/inorganic composite membranes using two types of polymer matrix via a sol-gel process", J. Power Sources, Vol. 181, No. 2, 2008, pp. 259-266, doi: https://doi.org/10.1016/j.jpowsour.2007.11.046.
  4. E. E. Unveren, T. Erdogan, S. S. Celebi, and T. Y. Inan, "Role of post-sulfonation of poly(ether ether sulfone) in proton conductivity and chemical stability of its proton exchange membranes for fuel cell", Int. J. Hydrogen Energy, Vol. 35, No. 8, 2010, pp. 3736-3744, doi: https://doi.org/10.1016/j.ijhydene.2010.01.041.
  5. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, "Alternative Polymer Systems for Proton Exchange Membranes (PEMs)", Chem. Rev., Vol. 104, No. 10, 2004, pp. 4587-4612, doi: https://doi.org/10.1021/cr020711a.
  6. Y. Sakaguchi, K. Kitamura, and S. Takase, "Isomeric effect of sulfonated poly(arylene ether)s comprising dihydroxynaphthalene on properties for polymer electrolyte membranes", J. Polym. Sci., Part A: Polym. Chem., Vol. 50, No. 22, 2012, pp. 4749-4755, doi: https://doi.org/10.1002/pola.26296.
  7. B. Bae, K. Miyatake, and M. Watanabe, "Effect of the hydrophobic component on the properties of sulfonated poly(arylene ether sulfone)s", Macromolecules, Vol. 42, No. 6, 2009, pp. 1873-1880, doi: https://doi.org/10.1021/ma8026518.
  8. J. Y. Chu, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synthesis and characterization of partially fluorinated sulfonated poly(arylene biphenylsulfone ketone) block copolymers containing 6F-BPA and perfluorobiphenylene units", Int. J. Hydrog. Energy, Vol. 38, No. 14, 2013, pp. 6268-6274, doi: https://doi.org/10.1016/j.ijhydene.2012.11.144.
  9. L. Unnikrishnan, S. Mohanty, and S. K. Nayak, "Proton exchange membranes from sulfonated poly(ether ether k etone) reinforced with silica nanoparticles", High Perform. Polym., Vol. 25, No. 7, 2013, pp. 854-867, doi: https://doi.org/10.1177/0954008313487392.
  10. M. Vinothkannan, A. R. Kim, J. M. Yoon, and D. J. Yoo, "Toward improved mechanical strength, oxidative stability and proton conductivity of an aligned quadratic hybrid (SPEEK/FPAPB/Fe3O4-FGO) membrane for application in high temperature and low humidity fuel cells", RSC Advances, Vol. 7, No. 62, 2017, pp. 39034-39048, doi: https://doi.org/10.1039/c7ra07063b.
  11. K. Oh, K. Ketpang, H. Kim, and S. Shanmugam, "Synthesis of sulfonated poly(arylene ether ketone) block copolymers for proton exchange membrane fuel cells", J. Membr. Sci., Vol. 507, 2016, pp. 135-142, doi: https://doi.org/10.1016/j.memsci.2016.02.027.
  12. A. K. Mohanty, E. A. Mistri, S. Banerjee, H. Komber, and B. Voit, "Highly fluorinated sulfonated poly(arylene ether sulfone) copolymers: synthesis and evaluation of proton exchange membrane properties", Ind. Eng. Chem. Res., Vol. 52. No. 8, 2013, pp. 2772-2783, doi: https://doi.org/10.1021/ie303380a.
  13. A. R. Kim, J. C. Gabunada, and D. J. Yoo, "Sulfonated fluorinated block copolymer containing naphthalene unit/sulfonated polyvinylidene-co-hexafluoropropylene/functionalized silicon dioxide ternary composite membrane for low-humidity fuel cell applications", Colloid. Polym. Sci., Vol. 296, No. 11, 2018, pp. 1891-1903, doi: https://doi.org/10.1007/s00396-018-4403-y.
  14. K. Selvakumar and M. R. Prabhu, "Investigation on meta-polybenzimidazole blend with sulfonated PVdF-HFP proton conducting polymer electrolytes for HT-PEM fuel cell application", J. Mater. Sci-Mater.Electron., Vol. 29, No. 17, 2018, pp. 15163-15173, doi: https://doi.org/10.1007/s10854-018-9658-z.
  15. A. Bagheri, M. Javanbakht, H. Beydaghi, P. Salarizadeh, A. Shabaniki, and H. S. Amolid, "Sulfonated poly(etheretherketone) and sulfonated polyvinylidene fluoride-co-hexafluoropropylene based blend proton exchange membranes for direct methanol fuel cell applications", RSC Adv., Vol. 6, No. 45, 2016, pp. 39500-39510, doi: https://doi.org/10.1039/c6ra00038j.
  16. A. Akbari and M. Homayoonfal, "Sulfonation and mixing with TiO2 nanoparticles as two simultaneous solutions for reducing fouling of polysulfone loose nanofiltration membrane", Korean J. Chem. Eng., Vol. 33, No. 8, 2016, pp. 2439-2452, doi: https://doi.org/10.1007/s11814-016-0107-5.
  17. A. R. Kim, M. Vinothkannan, and D. J. Yoo, "Sulfonated fluorinated multi-block copolymer hybrid containing sulfonated(poly ether ether ketone) and graphene oxide: A ternary hybrid membrane architecture for electrolyte applications in proton exchange membrane fuel cells", J. Energy Chem., Vol. 275, No. 4, 2018, pp. 1247-1260, doi: https://doi.org/10.1016/j.jechem.2018.02.020.
  18. J. Meier-Haack, A. Taeger, C. Vogel, K. Schlenstedt, W. Lenk, and D. Lehmann, "Membranes from sulfonated block copolymers for use in fuel cells", Sep. Purif. Technol., Vol. 41, No. 3, 2005, pp. 207-220, doi: https://doi.org/10.1016/j.seppur.2004.07.018.
  19. A. Rahnavard, S. Rowshanzamir, M. J. Parnian, and G. R. Amirkhanlou, "The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells", Energy, Vol. 82, 2015, pp. 746-757, doi: http://dx.doi.org/10.1016/j.energy.2015.01.086.
  20. A. R. Kim, J. C. Gabunada, and D. J. Yoo, "Amelioration in physicochemical properties and single cell performance of sulfonated poly(ether ether ketone) block copolymer composite membrane using sulfonated carbon nanotubes for intermediate humidity fuel cells", Int. J. Energy Res., Vol. 43, No. 7, 2019, pp. 2974-2989, doi: https://doi.org/10.1002/er.4494.
  21. B. Zhang, J. Ni, X. Xiang, L. Wang, and Y. Chen, "Synthesis and properties of reprocessable sulfonated polyimides cross-linked via acid stimulation for use as proton exchange membranes", J. Power Sources, Vol. 337, 2017, pp. 110-117, doi: https://doi.org/10.1016/j.jpowsour.2016.10.102.
  22. K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Enhanced performance of a sulfonated poly(arylene ether ketone) block copolymer bearing pendant sulfonic acid groups for polymer electrolyte membrane fuel cells operating at 80% relative humidity", ACS Appl. Mater. Interfaces, Vol. 10, No. 24, 2018, pp. 20835-20844, doi: https://doi.org/10.1021/acsami.8b03790.
  23. C. Zhao, X. Li, Z. Wang, Z. Dou, S. Zhong, and H. Na, "Synthesis of the block sulfonated poly(ether ether ketone)s (S-PEEKs) materials for proton exchange membrane", J. Membr. Sci., Vol. 280, No. 1-2, 2006, pp. 643-650, doi: https://doi.org/10.1016/j.memsci.2006.02.028.
  24. E. P. Jutemar, S. Takamuku, and P. Jannasch, "Facile synthesis and polymerization of 2,6-difluoro-2(-sulfobenzophenone for aromatic proton conducting ionomers with pendant sulfobenzoyl groups", Macromol. Rapid Commun., Vol. 31, No. 15, 2010, pp. 1348-1353, doi: https://doi.org/10.1002/marc.201000081.
  25. B. H. Oh, A. R. Kim, and D. J. Yoo, "Profile of extended chemical stability and mechanical integrity and high hydroxide ion conductivity of poly(ether imide) based membranes for anion exchange membrane fuel cells", Int. J. Hydrogen Energy, Vol. 44, No. 8, 2019, pp. 4281-4292, doi: https://doi.org/10.1016/j.ijhydene.2018.12.177.
  26. G. P. Robertson, S. D. Mikhailenko, K. Wang, P. Xing, M. D. Guiver, and S. Kaliaguine, "Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication", J. Membr. Sci., Vol. 219, No. 1-2, 2003, pp. 113-121, doi: https://doi.org/10.1016/S0376-7388(03)00193-5.
  27. T. Y. Ko, K. H. Kim, M. Y. Lim, S. Y. Nam, T. H. Kim, S. K. Kim, and J. C. Lee, "Sulfonated poly(arylene ether sulfone) composite membranes having poly(2,5-benzimidazole)-grafted graphene oxide for fuel cell applications", J. Mater. Chem. A, Vol. 3, 2015, pp. 20595-20606, doi: https://doi.org/10.1039/C5TA04849D.
  28. T. Mikami, K. Miyatake, and M. Watanabe, "Synthesis and properties of multiblock copoly(arylene ether)s containing superacid groups for fuel cell membranes", J. Polym. Sci., Part A: Polym. Chem., Vol. 49, No. 2, 2011 pp. 452-464, doi: https://doi.org/10.1002/pola.24458.
  29. Y. Zhao and J. Yin, "Synthesis and evaluation of all-block-sulfonated copolymers as proton exchange membranes for fuel cell application", J. Membr. Sci., Vol. 351, No. 1-2, 2010, pp. 28-35, doi: https://doi.org/10.1016/j.memsci.2010.01.024.
  30. H. Q. Li, X. J. Liu, J. Xu, D. Xu, H. Ni, S. Wang, and Z. Wang, "Enhanced proton conductivity of sulfonated poly(arylene ether ketone sulfone) for fuel cells by grafting triazole groups onto polymer chains", J. Membr. Sci., Vol. 509, 2016, pp. 173-181, doi: https://doi.org/10.1016/j.memsci.2016.02.039.
  31. E. A. Weiber, S. Takamuku, and P. Jannasch, "Highly proton conducting electrolyte membranes based on poly(arylene sulfone)s with tetrasulfonated Segments", Macromolecules, Vol. 46, No. 9, 2013, pp. 3476-3485, doi: https://doi.org/10.1021/ma4002929.
  32. H. Xie, D. Tao, X. Xiang, Y. Ou, X. Bai, and L. Wang, "Synthesis and properties of highly branched star-shaped sulfonated block poly(arylene ether)s as proton exchange membranes", J. Membr. Sci., Vol. 473, 2015, pp. 226-236, doi: http://dx.doi.org/10.1016/j.memsci.2014.09.015.
  33. T. Yoo, Md. A. Aziz, K. Oh, and S. Shanmugam, "Modified sulfonated Poly(arylene ether) multiblock copolymers containing highly sulfonated blocks for polymer electrolyte membrane fuel cells", J. Membr. Sci., Vol. 542, 2017, pp. 102-109, doi: https://doi.org/10.1016/j.memsci.2017.08.008.
  34. Y. D. Lim, D. W. Seo, S. H. Lee, Md. A. Hossain, K. M. Kang, H. C. Ju, and W. G. Kim, "Synthesis and characterization of sulfonated poly(arylene ether ketone sulfone) block copolymers containing multi-phenyl for PEMFC", Int. J. Hydrogen Energy, Vol. 38, No. 1, 2013, pp. 631-639, doi: https://doi.org/10.1016/j.ijhydene.2012.06.092.
  35. A. R. Kim, M. Vinothkannan, C. J. Park, and D. J. Yoo, "Alleviating the mechanical and thermal degradations of highly sulfonated poly(ether ether ketone) blocks via copolymerization with hydrophobic unit for intermediate humidity fuel cells", Polymers, Vol. 10, No. 12, 2018, p. 1346, doi: https://doi.org/10.3390/polym10121346.
  36. B. B. Munavalli and M. Y. Kariduraganavar, "Development of novel sulfonic acid functionalized zeolites incorporated composite proton exchange membranes for fuel cell application", Electrochim. Acta, Vol. 296, 2019, pp. 294-307, doi: https://doi.org/10.1016/j.electacta.2018.11.056.