Browse > Article
http://dx.doi.org/10.7316/KHNES.2019.30.3.227

Preparation and Characterization of SPAES/SPVdF-co-HFP Blending Membranes for Polymer Electrolyte Membrane Fuel Cells  

PARK, CHUL JIN (Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University)
KIM, AE RHAN (R&D Center for CANUTECH, Business Incubation Center, Chonbuk National University)
YOO, DONG JIN (Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.30, no.3, 2019 , pp. 227-236 More about this Journal
Abstract
In this work, preparation and characterizations of hybrid membranes containing sulfonated poly(arylene ether sulfone) (SPES) and sulfonated poly(vinylidene fluoride-co-hexafluoropropylene) (SPVdF-co-HFP) (20, 30 or 40 wt%) were carried out. The structure of hybrid membranes was confirmed using X-ray diffraction (XRD) analysis and the Fourier transform infrared (FT-IR) spectroscopy. The prepared SPAES/SPVdF-30 membrane exhibits higher ionic conductivity of 68.9 mS/cm at $90^{\circ}C$ and 100% RH. Besides, the other studies showed that the hybrid membrane has good oxidation stability, thermal stability, and mechanical stability. Thus, we believe that the prepared hybrid membrane is suitable for the development of membranes for fuel cell applications.
Keywords
Proton exchange membrane fuel cell; Sulfonated poly(arylene ether sulfone); Post sulfonation; Proton conductivity; Mechanical stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Sakaguchi, K. Kitamura, and S. Takase, "Isomeric effect of sulfonated poly(arylene ether)s comprising dihydroxynaphthalene on properties for polymer electrolyte membranes", J. Polym. Sci., Part A: Polym. Chem., Vol. 50, No. 22, 2012, pp. 4749-4755, doi: https://doi.org/10.1002/pola.26296.   DOI
2 B. Bae, K. Miyatake, and M. Watanabe, "Effect of the hydrophobic component on the properties of sulfonated poly(arylene ether sulfone)s", Macromolecules, Vol. 42, No. 6, 2009, pp. 1873-1880, doi: https://doi.org/10.1021/ma8026518.   DOI
3 J. Y. Chu, A. R. Kim, K. S. Nahm, H. K. Lee, and D. J. Yoo, "Synthesis and characterization of partially fluorinated sulfonated poly(arylene biphenylsulfone ketone) block copolymers containing 6F-BPA and perfluorobiphenylene units", Int. J. Hydrog. Energy, Vol. 38, No. 14, 2013, pp. 6268-6274, doi: https://doi.org/10.1016/j.ijhydene.2012.11.144.   DOI
4 L. Unnikrishnan, S. Mohanty, and S. K. Nayak, "Proton exchange membranes from sulfonated poly(ether ether k etone) reinforced with silica nanoparticles", High Perform. Polym., Vol. 25, No. 7, 2013, pp. 854-867, doi: https://doi.org/10.1177/0954008313487392.   DOI
5 M. Vinothkannan, A. R. Kim, J. M. Yoon, and D. J. Yoo, "Toward improved mechanical strength, oxidative stability and proton conductivity of an aligned quadratic hybrid (SPEEK/FPAPB/Fe3O4-FGO) membrane for application in high temperature and low humidity fuel cells", RSC Advances, Vol. 7, No. 62, 2017, pp. 39034-39048, doi: https://doi.org/10.1039/c7ra07063b.   DOI
6 K. Oh, K. Ketpang, H. Kim, and S. Shanmugam, "Synthesis of sulfonated poly(arylene ether ketone) block copolymers for proton exchange membrane fuel cells", J. Membr. Sci., Vol. 507, 2016, pp. 135-142, doi: https://doi.org/10.1016/j.memsci.2016.02.027.   DOI
7 A. K. Mohanty, E. A. Mistri, S. Banerjee, H. Komber, and B. Voit, "Highly fluorinated sulfonated poly(arylene ether sulfone) copolymers: synthesis and evaluation of proton exchange membrane properties", Ind. Eng. Chem. Res., Vol. 52. No. 8, 2013, pp. 2772-2783, doi: https://doi.org/10.1021/ie303380a.   DOI
8 A. Bagheri, M. Javanbakht, H. Beydaghi, P. Salarizadeh, A. Shabaniki, and H. S. Amolid, "Sulfonated poly(etheretherketone) and sulfonated polyvinylidene fluoride-co-hexafluoropropylene based blend proton exchange membranes for direct methanol fuel cell applications", RSC Adv., Vol. 6, No. 45, 2016, pp. 39500-39510, doi: https://doi.org/10.1039/c6ra00038j.   DOI
9 A. R. Kim, J. C. Gabunada, and D. J. Yoo, "Sulfonated fluorinated block copolymer containing naphthalene unit/sulfonated polyvinylidene-co-hexafluoropropylene/functionalized silicon dioxide ternary composite membrane for low-humidity fuel cell applications", Colloid. Polym. Sci., Vol. 296, No. 11, 2018, pp. 1891-1903, doi: https://doi.org/10.1007/s00396-018-4403-y.   DOI
10 K. Selvakumar and M. R. Prabhu, "Investigation on meta-polybenzimidazole blend with sulfonated PVdF-HFP proton conducting polymer electrolytes for HT-PEM fuel cell application", J. Mater. Sci-Mater.Electron., Vol. 29, No. 17, 2018, pp. 15163-15173, doi: https://doi.org/10.1007/s10854-018-9658-z.   DOI
11 A. Akbari and M. Homayoonfal, "Sulfonation and mixing with TiO2 nanoparticles as two simultaneous solutions for reducing fouling of polysulfone loose nanofiltration membrane", Korean J. Chem. Eng., Vol. 33, No. 8, 2016, pp. 2439-2452, doi: https://doi.org/10.1007/s11814-016-0107-5.   DOI
12 A. R. Kim, M. Vinothkannan, and D. J. Yoo, "Sulfonated fluorinated multi-block copolymer hybrid containing sulfonated(poly ether ether ketone) and graphene oxide: A ternary hybrid membrane architecture for electrolyte applications in proton exchange membrane fuel cells", J. Energy Chem., Vol. 275, No. 4, 2018, pp. 1247-1260, doi: https://doi.org/10.1016/j.jechem.2018.02.020.
13 J. Meier-Haack, A. Taeger, C. Vogel, K. Schlenstedt, W. Lenk, and D. Lehmann, "Membranes from sulfonated block copolymers for use in fuel cells", Sep. Purif. Technol., Vol. 41, No. 3, 2005, pp. 207-220, doi: https://doi.org/10.1016/j.seppur.2004.07.018.   DOI
14 E. P. Jutemar, S. Takamuku, and P. Jannasch, "Facile synthesis and polymerization of 2,6-difluoro-2(-sulfobenzophenone for aromatic proton conducting ionomers with pendant sulfobenzoyl groups", Macromol. Rapid Commun., Vol. 31, No. 15, 2010, pp. 1348-1353, doi: https://doi.org/10.1002/marc.201000081.   DOI
15 A. Rahnavard, S. Rowshanzamir, M. J. Parnian, and G. R. Amirkhanlou, "The effect of sulfonated poly (ether ether ketone) as the electrode ionomer for self-humidifying nanocomposite proton exchange membrane fuel cells", Energy, Vol. 82, 2015, pp. 746-757, doi: http://dx.doi.org/10.1016/j.energy.2015.01.086.   DOI
16 A. R. Kim, J. C. Gabunada, and D. J. Yoo, "Amelioration in physicochemical properties and single cell performance of sulfonated poly(ether ether ketone) block copolymer composite membrane using sulfonated carbon nanotubes for intermediate humidity fuel cells", Int. J. Energy Res., Vol. 43, No. 7, 2019, pp. 2974-2989, doi: https://doi.org/10.1002/er.4494.   DOI
17 B. Zhang, J. Ni, X. Xiang, L. Wang, and Y. Chen, "Synthesis and properties of reprocessable sulfonated polyimides cross-linked via acid stimulation for use as proton exchange membranes", J. Power Sources, Vol. 337, 2017, pp. 110-117, doi: https://doi.org/10.1016/j.jpowsour.2016.10.102.   DOI
18 K. H. Lee, J. Y. Chu, A. R. Kim, and D. J. Yoo, "Enhanced performance of a sulfonated poly(arylene ether ketone) block copolymer bearing pendant sulfonic acid groups for polymer electrolyte membrane fuel cells operating at 80% relative humidity", ACS Appl. Mater. Interfaces, Vol. 10, No. 24, 2018, pp. 20835-20844, doi: https://doi.org/10.1021/acsami.8b03790.   DOI
19 C. Zhao, X. Li, Z. Wang, Z. Dou, S. Zhong, and H. Na, "Synthesis of the block sulfonated poly(ether ether ketone)s (S-PEEKs) materials for proton exchange membrane", J. Membr. Sci., Vol. 280, No. 1-2, 2006, pp. 643-650, doi: https://doi.org/10.1016/j.memsci.2006.02.028.   DOI
20 B. H. Oh, A. R. Kim, and D. J. Yoo, "Profile of extended chemical stability and mechanical integrity and high hydroxide ion conductivity of poly(ether imide) based membranes for anion exchange membrane fuel cells", Int. J. Hydrogen Energy, Vol. 44, No. 8, 2019, pp. 4281-4292, doi: https://doi.org/10.1016/j.ijhydene.2018.12.177.   DOI
21 Y. Zhao and J. Yin, "Synthesis and evaluation of all-block-sulfonated copolymers as proton exchange membranes for fuel cell application", J. Membr. Sci., Vol. 351, No. 1-2, 2010, pp. 28-35, doi: https://doi.org/10.1016/j.memsci.2010.01.024.   DOI
22 G. P. Robertson, S. D. Mikhailenko, K. Wang, P. Xing, M. D. Guiver, and S. Kaliaguine, "Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication", J. Membr. Sci., Vol. 219, No. 1-2, 2003, pp. 113-121, doi: https://doi.org/10.1016/S0376-7388(03)00193-5.   DOI
23 T. Y. Ko, K. H. Kim, M. Y. Lim, S. Y. Nam, T. H. Kim, S. K. Kim, and J. C. Lee, "Sulfonated poly(arylene ether sulfone) composite membranes having poly(2,5-benzimidazole)-grafted graphene oxide for fuel cell applications", J. Mater. Chem. A, Vol. 3, 2015, pp. 20595-20606, doi: https://doi.org/10.1039/C5TA04849D.   DOI
24 T. Mikami, K. Miyatake, and M. Watanabe, "Synthesis and properties of multiblock copoly(arylene ether)s containing superacid groups for fuel cell membranes", J. Polym. Sci., Part A: Polym. Chem., Vol. 49, No. 2, 2011 pp. 452-464, doi: https://doi.org/10.1002/pola.24458.   DOI
25 H. Q. Li, X. J. Liu, J. Xu, D. Xu, H. Ni, S. Wang, and Z. Wang, "Enhanced proton conductivity of sulfonated poly(arylene ether ketone sulfone) for fuel cells by grafting triazole groups onto polymer chains", J. Membr. Sci., Vol. 509, 2016, pp. 173-181, doi: https://doi.org/10.1016/j.memsci.2016.02.039.   DOI
26 E. A. Weiber, S. Takamuku, and P. Jannasch, "Highly proton conducting electrolyte membranes based on poly(arylene sulfone)s with tetrasulfonated Segments", Macromolecules, Vol. 46, No. 9, 2013, pp. 3476-3485, doi: https://doi.org/10.1021/ma4002929.   DOI
27 A. R. Kim, M. Vinothkannan, C. J. Park, and D. J. Yoo, "Alleviating the mechanical and thermal degradations of highly sulfonated poly(ether ether ketone) blocks via copolymerization with hydrophobic unit for intermediate humidity fuel cells", Polymers, Vol. 10, No. 12, 2018, p. 1346, doi: https://doi.org/10.3390/polym10121346.   DOI
28 H. Xie, D. Tao, X. Xiang, Y. Ou, X. Bai, and L. Wang, "Synthesis and properties of highly branched star-shaped sulfonated block poly(arylene ether)s as proton exchange membranes", J. Membr. Sci., Vol. 473, 2015, pp. 226-236, doi: http://dx.doi.org/10.1016/j.memsci.2014.09.015.   DOI
29 T. Yoo, Md. A. Aziz, K. Oh, and S. Shanmugam, "Modified sulfonated Poly(arylene ether) multiblock copolymers containing highly sulfonated blocks for polymer electrolyte membrane fuel cells", J. Membr. Sci., Vol. 542, 2017, pp. 102-109, doi: https://doi.org/10.1016/j.memsci.2017.08.008.   DOI
30 Y. D. Lim, D. W. Seo, S. H. Lee, Md. A. Hossain, K. M. Kang, H. C. Ju, and W. G. Kim, "Synthesis and characterization of sulfonated poly(arylene ether ketone sulfone) block copolymers containing multi-phenyl for PEMFC", Int. J. Hydrogen Energy, Vol. 38, No. 1, 2013, pp. 631-639, doi: https://doi.org/10.1016/j.ijhydene.2012.06.092.   DOI
31 B. B. Munavalli and M. Y. Kariduraganavar, "Development of novel sulfonic acid functionalized zeolites incorporated composite proton exchange membranes for fuel cell application", Electrochim. Acta, Vol. 296, 2019, pp. 294-307, doi: https://doi.org/10.1016/j.electacta.2018.11.056.   DOI
32 E. E. Unveren, T. Erdogan, S. S. Celebi, and T. Y. Inan, "Role of post-sulfonation of poly(ether ether sulfone) in proton conductivity and chemical stability of its proton exchange membranes for fuel cell", Int. J. Hydrogen Energy, Vol. 35, No. 8, 2010, pp. 3736-3744, doi: https://doi.org/10.1016/j.ijhydene.2010.01.041.   DOI
33 S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, "Review of the proton exchange membranes for fuel cell applications", Int. J. Hydrog. Energy, Vol. 35. No. 17, 2010, pp. 9349-9384, doi: https://doi.org/doi:10.1016/j.ijhydene.2010.05.017.   DOI
34 M. E. Scofield, H. Liu, and S. S. Wong, "A concise guide to sustainable PEMFCs: recent advances improving both oxygen reduction catalysts and proton exchange membranes", Chem. Soc. Rev., Vol. 44, No. 16. 2015, pp. 5836-5860, doi: https://doi.org/10.1039/C5CS00302D.   DOI
35 S. H. Park, J. S. Park, S. D. Yim, S. H. Park, Y. M. Lee, and C. S. Kim, "Preparation of organic/inorganic composite membranes using two types of polymer matrix via a sol-gel process", J. Power Sources, Vol. 181, No. 2, 2008, pp. 259-266, doi: https://doi.org/10.1016/j.jpowsour.2007.11.046.   DOI
36 M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, "Alternative Polymer Systems for Proton Exchange Membranes (PEMs)", Chem. Rev., Vol. 104, No. 10, 2004, pp. 4587-4612, doi: https://doi.org/10.1021/cr020711a.   DOI