DOI QR코드

DOI QR Code

Material Life Cycle Assessment of Mg-CaO-10 wt.% MWCNT Hydrogen Storage Composites

수소저장용 Mg-CaO-10 wt.% MWCNT 복합체의 물질 전과정 평가

  • HAN, JEONG-HEUM (Department of Materials Science & Engineering, Korea National University of Transportation) ;
  • LEE, YOUNG-HWAN (Department of Materials Science & Engineering, Korea National University of Transportation) ;
  • YU, JAE-SEON (Department of Materials Science & Engineering, Korea National University of Transportation) ;
  • HONG, TAE-WHAN (Department of Materials Science & Engineering, Korea National University of Transportation)
  • 한정흠 (한국교통대학교 화공신소재고분자공학부 신소재공학전공) ;
  • 이영환 (한국교통대학교 화공신소재고분자공학부 신소재공학전공) ;
  • 유제선 (한국교통대학교 화공신소재고분자공학부 신소재공학전공) ;
  • 홍태환 (한국교통대학교 화공신소재고분자공학부 신소재공학전공)
  • Received : 2019.05.30
  • Accepted : 2019.06.30
  • Published : 2019.06.30

Abstract

Magnesium hydride has a high hydrogen storage capacity (7.6 wt.%), and is cheap and lightweight, thus advantageous as a hydrogen storage alloy. However, Mg-based hydrides undergo hydrogenation/dehydrogenation at high temperature and pressure due to their thermodynamic stability and high oxidation reactivity. MWCNTs exhibit prominent catalytic effect on the hydrogen storage properties of $MgH_2$, weakening the interaction between Mg and H atoms and reducing the activation energy for nucleation of the metal phase by co-milling Mg with carbon nanotubes. Therefore, it is suggested that combining transition metals with carbon nanotubes as mixed dopants has a significant catalytic effect on the hydrogen storage properties of $MgH_2$. In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of Mg-CaO-10 wt.% MWCNTs composites manufacturing process. The software of material life cycle assessment (MLCA) was Gabi 6. Through this, environmental impact assessment was performed for each process.

Keywords

SSONB2_2019_v30n3_220_f0001.png 이미지

Fig. 1. SEM image of (a) MgHx-CaO-10 wt.% MWCNT and mapping image of (b) MgHx-CaO-10 wt.% MWCNT in MgHx, (c) MgHx-CaO-10 wt.% MWCNT in carbon

SSONB2_2019_v30n3_220_f0002.png 이미지

Fig. 2. XRD patterns of MgHx-CaO fabricated with 96 hours BCR 66:1 and MgHx-CaO-graphene/MWCNT (Mg: ●, MgH2: ◐, CaO: ♧, C Carbon: ♠)

SSONB2_2019_v30n3_220_f0003.png 이미지

Fig. 5. Process flow diagram for Mg-CaO-MWCNT

SSONB2_2019_v30n3_220_f0004.png 이미지

Fig. 3. Results for MgHx-CaO, MgHx-CaO-MWCNT composites by (a) TG analysis and (b) DSC analysis

SSONB2_2019_v30n3_220_f0005.png 이미지

Fig. 6. Impact assessment results for manufacturing process of Mg-CaO-MWCNT by CML2001

SSONB2_2019_v30n3_220_f0006.png 이미지

Fig. 7. Impact assessment results for manufacturing process of Mg-CaO-MWCNT by EI 99’

SSONB2_2019_v30n3_220_f0007.png 이미지

Fig. 8. Co2 and Human toxicity emissions of Mg-CaO-MWCNT, human toxicity emissions of Mg-CaO

SSONB2_2019_v30n3_220_f0008.png 이미지

Fig. 9. Human toxicity emission distribution

SSONB2_2019_v30n3_220_f0009.png 이미지

Fig. 4. Kinetics results of MgHx-CaO and MgHx-CaO-MWCNT composites

Table. 1. Particle size analysis of MgHx-CaO-MWCNT compo-sites

SSONB2_2019_v30n3_220_t0001.png 이미지

References

  1. M. Calizzi, D. Chericoni, L. H. Jepsen, T. R. Jensen, and L. Pasquini, "Mg-Ti nanoparticles with superior kinetics for hydrogen storage", International Journal of Hydrogen Energy, Vol. 41, No. 32, 2016, pp. 14447-14454, doi: https://doi.org/10.1016/j.ijhydene.2016.03.071.
  2. J. K. Lee and S. K. Kim, "Effect of CaO addition on the ignition resistance of Mg-Al alloys", Materials transactions, Vol. 52, No. 7, 2011, pp. 1483-1488, doi: https://doi.org/10.2320/matertrans.m2010397.
  3. J. Xiao, M. Hu, D. Cossement, P. Benard, and R. Chahine, "Finite element simulation for charge-discharge cycle of cryo-adsorptive hydrogen storage on activated carbon", International Journal of Hydrogen Energy, Vol. 37, No. 17, 2012, pp. 12947-12959, doi: https://doi.org/10.1016/j.ijhydene.2012.05.072.
  4. A. M. Rashidi, A. Nouralishahi, A. A. Khodadadi, Y. Mortazavi, A. Karimi, and K. Kashefi, "Modification of single wall carbon nanotubes (SWNT) for hydrogen storage", International Journal of Hydrogen Energy, Vol. 35, No. 17, 2010, pp. 9489-9495, doi: https://doi.org/10.1016/j.ijhydene.2010.03.038.
  5. S. ullah Rather, A. A. Taimoor, A. Muhammad, Y. A. Alhamed, S. F. Zaman, and A. M. Ali, "Kinetics of hydrogen adsorption on MgH2/CNT composite", Materials Research Bulletin, Vol. 77, 2016, pp. 23-28, doi: https://doi.org/10.1016/j.materresbull.2016.01.025.
  6. B. S. Amirkhiz, M. Danaie, and D. Mitlin, "The influence of SWCNT-metallic nanoparticle mixtures on the desorption properties of milled $MgH_2$ powders", Nanotechnology, Vol. 20, No. 20, 2009, p. 204016, doi: https://doi.org/10.1088/0957-4484/20/20/204016.
  7. L. Popilevsky, V. M. Skripnyuk, M. Beregovsky, M. Sezen, Y. Amouyal, and E. Rabkin, "Hydrogen storage and thermal transport properties of pelletized porous Mg-2 wt.% multiwall carbon nanotubes and Mg-2 wt.% graphite composites", International Journal of Hydrogen Energy, Vol. 41, No. 32, 2016, pp. 14461-14474, doi: https://doi.org/10.1016/j.ijhydene.2016.03.014.
  8. S. H. Lee and Y. M. Jo, "Review of National Policies on the Utilization of Waste Metal Resources", Prospectives of Industrial Chemistry, Vol. 13, No. 1, 2010, pp. 2-9. Retrieved from: http://kiss.kstudy.com/thesis/thesis-view.asp?key=2822866.
  9. S. S. Lee, N. R. Lee, K. I. Kim, and T. W. Hong, "Environmental Impacts Assessment of ITO (Indium Tin Oxide) Using Material Life Cycle Assessment", Vol. 18, No. 1, 2012, pp. 69-75, doi: https://doi.org/10.7464/ksct.2012.18.1.069.
  10. I. Mahmud, S. C. Ur, and M. S. Yoon, "Effect of high-energy milling process on microstructure and piezoelectric/dielectric properties of 0.99 Pb ($Zr_{0.53}\;Ti_{0.47}$) $O_3$-0.01 $BiYO_3$ ceramic for piezoelectric energy harvesting devices", Electronic Materials Letters, Vol. 10, No. 1, 2014, pp. 223-228, doi: https://doi.org/10.1007/s13391-013-3060-z.
  11. X. Yao, C. Wu, A. Du, G. Q. Lu, H. Cheng, S. C. Smith, J. Zou, and Y. He, "Mg-based nanocomposites with high capacity and fast kinetics for hydrogen storage", J. Phys. Chem. B, Vol. 110, No. 24, 2006, pp. 11697-11703, doi: https://doi.org/10.1021/jp057526w.
  12. N. R. Lee, S. S. Lee, K. I. Kim, and T. W. Hong., "Environmental Assessment of Chemically Strengthened Glass for Touch Screen Panel by Material Life Cycle Assessment", Clean Technology, Vol. 18, No. 3, 2012, pp. 301-306, doi: https://doi.org/10.7464/ksct.2012.18.3.301.
  13. M. G. Kim, J. T. Son, and T. W. Hong, "Evaluation of TiN-Zr Hydrogen Permeation Membrane by MLCA (Material Life Cycle Assessment)", Clean Techonl, Vol. 24, No. 1, 2018, pp. 9-14, doi: https://doi.org/10.7464/ksct.2018.24.1.009.