DOI QR코드

DOI QR Code

Hydrogen Sulfide Removal in Full-scale Landfill Gas Using Leachate and Chelated Iron

침출수 및 철킬레이트를 이용한 실규모 매립가스 내 황화수소 제거

  • Park, Jong-Hun (School of Civil and Environmental Engineering, Yonsei University) ;
  • Kim, Sang-Hyoun (School of Civil and Environmental Engineering, Yonsei University)
  • 박종훈 (연세대학교 건설환경공학과) ;
  • 김상현 (연세대학교 건설환경공학과)
  • Received : 2019.06.10
  • Accepted : 2019.06.24
  • Published : 2019.06.30

Abstract

$H_2S$ is a detrimental impurity that must be removed for upgrading biogas to biomethane. This study investigates an economic method to mitigate $H_2S$ content, combining scrubbing and aeration. The desulfurization experiments were performed in a laboratory apparatus using EDTA-Fe or landfill leachate as the catalyst and metered mixture of 50-52% (v/v) $CH_4$, 32-33% (v/v) $CO_2$ and 500-1,000 ppmv $H_2S$ balanced by $N_2$ using the C city landfill gas. Dissolved iron concentration in the liquid medium significantly affected the oxidation efficiency of sulfide. Iron components in landfill leachate, which would be available in a biogas/landfill gas utilization facility, was compatible with an external iron chelate. More than 70% of $H_2S$ was removed in a contact time of 9 seconds at iron levels at or over 28 mM. The scrubbing-aeration process would be a feasible and easy-to-operate technology for biogas purification.

황화수소는 매립가스와 바이오가스 사용 전에 제거해야 하는 유해한 불순물이다. 본 연구에서는 공기 산화를 활용한 황화수소 저감 방법을 연구하였다. C시 매립장에서 발생하는 매립가스의 유량 조절이 가능한 실규모 황화수소 저감 장치를 운전하였다. 실험 결과, 세정액 내 용존 철 농도는 황화물 산화 효율에 유의한 영향을 미쳤다. 매립지 발생 침출수 내 철 성분은 매립가스 내 황화수소 제거를 위한 용도로 철킬레이트와 혼용할 수 있었다. 철 농도가 90 mM 이상인 경우 9 초 이내의 접촉 시간에서 83 % 이상의 $H_2S$가 제거되었다. 따라서 촉매 산화 흡착법은 매립가스 및 바이오가스 정제를 위한 용도로서 충분히 가치가 있는 것으로 판단되었다.

Keywords

DOGSBE_2019_v27n2_51_f0001.png 이미지

Fig. 1. Schematic diagram of hydrogen sulfide removal utilizing leachate and fe-chelate.

DOGSBE_2019_v27n2_51_f0002.png 이미지

Fig. 2. Distribution of outlet hydrogen sulphide concentration without pH control.

DOGSBE_2019_v27n2_51_f0003.png 이미지

Fig. 3. Behavior of outlet hydrogen sulphide concentration during controlled pH by intermittent mixing of NaOH.

Table 1. Landfill Gas Composition in C City Landfill Site

DOGSBE_2019_v27n2_51_t0001.png 이미지

Table 2. Capability of Hydrogen Sulfide Capture in Continuous Circulation Operation Using Iron Chelating Solvent.

DOGSBE_2019_v27n2_51_t0002.png 이미지

Table 3. Hydrogen Sulfide Collection Efficiency in Continuous Operation with Leachate and Iron Chelate.

DOGSBE_2019_v27n2_51_t0003.png 이미지

References

  1. P. Jaramillo, H.S. Matthews, "Landfill-gas-to-energy projects: Analysis of net private and social benefits", Environ. Sci. Technol., 39, pp. 7365-7373. (2005). https://doi.org/10.1021/es050633j
  2. S. Rasi, J.Lantela, J. Rintala, "Trace compounds affecting biogas energy utilisation-A review", Energy Convers. Manage, 52, pp. 3369-3375. (2011). https://doi.org/10.1016/j.enconman.2011.07.005
  3. G.M. Deshmukh, A. Shete, D.M. Pawar, "Oxidative absorption of hydrogen sulfide using an iron-chelate based process: chelate degradation", J. Chem. Technol. Biotechnol., 88, pp. 432-436. (2013). https://doi.org/10.1002/jctb.3903
  4. X. Zhang, Y. Tang, S. Qu, J. Da, Z. Hao, "$H_2S$-Selective catalytic oxidation: catalysts and processes", ACS Catal., 5, pp. 1053-1067. (2015). https://doi.org/10.1021/cs501476p
  5. I. Diaz, S.I. P_erez, E.M. Ferrero, M. Fdz-Polanco, "Effect of oxygen dosing point and mixing on the microaerobic removal of hydrogen sulphide in sludge digesters", Bioresour. Technol., 102, pp. 3768-3775. (2011). https://doi.org/10.1016/j.biortech.2010.12.016
  6. A.D. Wiheeb, I.K. Shamsudin, M.A. Ahmad, M.N. Murat, J. Kim, M.R. Othman, "Present technologies for hydrogen sulfide removal from gaseous mixtures", Rev. Chem. Eng., 29, pp. 449-470. (2013).
  7. E. Ryckebosch, M. Drouillon, H. Vervaeren, "Techniques for transformation of biogas to biomethane", Biomass Bioenerg., 35, pp. 1633-1645. (2011). https://doi.org/10.1016/j.biombioe.2011.02.033
  8. D. McManus, A.E. Martell, "The evolution, chemistry and applications of chelated iron hydrogen sulfide removal and oxidation processes", J. Mol. Catal. A Chem. 117, pp. 289-297. (1997). https://doi.org/10.1016/S1381-1169(96)00254-3
  9. APHA standard methods for the examination of water and wastewater, APHA/AWWA/WEF, Washington D.C, (2005).
  10. J. Krischan, A. Makaruk, M. Harasek, "Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas", J. Hazard Mater, 215-216, pp. 49-56. (2012). https://doi.org/10.1016/j.jhazmat.2012.02.028
  11. M. Miltner, A. Makaruk, J. Krischan, M. Harasek, "Chemical-oxidative scrubbing or the removal of hydrogen sulphide from raw biogas: potentials and economics", Water Sci. Technol., 66, pp. 1354-1360. (2012). https://doi.org/10.2166/wst.2012.329
  12. D. McManus, A.E. Martell, "The evolution, chemistry and applications of chelated iron hydrogen sulfide removal and oxidation processes", J. Mol. Catal. A Chem., 117, pp. 289-297. (1997). https://doi.org/10.1016/S1381-1169(96)00254-3
  13. C.F. Petre, S. Piche, A. Normandin, F. Larachi, "Advances in chemical oxidation of total reduced sulfur from kraft mills atmospheric effluents", Int. J. Chem. React. Eng., 5, pp. 1-32. (2007).