• Title/Summary/Keyword: 황화수소

Search Result 442, Processing Time 0.032 seconds

Trichloroethylene Removal Using Sulfate Reducing Bacteria and Ferric Iron (황환원균과 3가철을 이용한 Trichloroethylene의 제거에 관한 연구)

  • Hwang, Ki-Chul;Min, Jee-Eun;Park, In-Sun;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.24-31
    • /
    • 2008
  • Sulfate reducing bacteria (SRB) is universally distributed in the sediment, especially in marine environment. SRB reduce sulfate as electron acceptor to hydrogen sulfide in anaerobic condition. Hydrogen sulfide is reducing agent enhancing the reduction of the organic and inorganic compounds. With SRB, therefore, the degradability of organic contaminants is expected to be enhanced. Ferrous iron reduced from the ferric iron which is mainly present in sediment also renders chlorinated organic compounds to be reduced state. The objectives of this study are: 1) to investigate the reduction of TCE by hydrogen sulfide generated by tht growth of SRB, 2) to estimate the reduction of TCE by ferrous iron generated due to oxidation of hydrogen sulfide, and 3) to illuminate the interaction between SRB and ferrous iron. Mixed bacteria was cultivated from the sludge of the sewage treatment plant. Increasing hydrogen sulfide and decreasing sulfate confirmed the existence of SRB in mixed culture. Although hydrogen sulfide lonely could reduce TCE, the concentration of hydrogen sulfide produced by SRB was not sufficient to reduce TCE directly. With hematite as ferric iron, hydrogen sulfide produced by SRB was consumed to reduce ferric ion to ferrous ion and ferrous iron produced by hydrogen sulfide oxidation decreased the concentration of TCE. Tests with seawater confirmed that the activity of SRB was dependent on the carbon source concentration.

Study on the Removal of Hydrogen Sulfide in Landfill Gases using Hydroquinone Clathrate (하이드로퀴논을 이용한 매립가스 내 황화수소 제거에 관한 연구)

  • Han, Kyuwon;Moon, Donghyun;Shin, Hyungjoon;Lee, Jaejeong;Lee, Gangwoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.189.2-189.2
    • /
    • 2011
  • 매립가스(LFG)는 약 50v/v% 이상의 메탄가스로 이루어져 있어 LFG의 자원화 사업은 국내 신 재생에너지를 이용한 발전사업 중 태양광사업 다음으로 활발히 진행되고 있다. LFG의 대표적인 활용기술로는 가스엔진, 가스터빈 및 증기터빈을 이용한 발전과 중질가스 및 고질가스 형태의 연료로 생산하는 방식 등이 있으며 이러한 분야에 매립지가스를 적용하기 위해서는 장치 부식의 주 원인이 되는 황화수소 가스의 제거가 반드시 이루어져야 한다. 본 연구에서는 황화수소 제거를 위해 하이드레이트와 마찬가지로 동공을 형성하여 가스의 포집과 저장이 가능한 하이드로퀴논(HQ)을 이용하고자 한다. HQ은 $0^{\circ}C$ 부근에서 해리되는 하이드레이트와 달리 상온에서 고체 형태로 구조를 유지할 수 있어 가스의 포집 및 저장에 용이한 장점이 있다. 메탄, 이산화탄소, 황화수소 혼합가스에서 황화수소 90% 이상 제거를 목적으로 HQ와 반응시켜 동공 내에 이들 가스의 포집여부를 확인하였다.

  • PDF

Development of Porous Sorbents for Removal of Hydrogen Sulfide from Hot Coal Gases III. Study on Ferrite-type adsorbent for the Removal of Hydrogen Sulfide

  • Kim, Jong-Saeng;Lee, Young-Soo;Lee, Bok-Jae;Yoo, Kyong-Ok
    • Journal of Environmental Health Sciences
    • /
    • v.17 no.1
    • /
    • pp.39-49
    • /
    • 1991
  • 고온에서 황화수소(H$_{2}$S)를 제거하기 위한 흡착제를 개발할 목적으로 ZnO에 $Fe_{2}O_{3}$를 5~50 atomic %까지 첨가시켜 제조한 다공성 흡착제와 황화수소와의 반응(sulfidation)을 thermogravimetric analyzer (Shimadzu DT-30)로 수행하였으며, 고정층세서 zinc ferrite 흡착제의 흡착능을 측정하였다. 반응온도는723$^{\circ}$K~973$^{\circ}$K범위이며, 반응기체는 황화수소(2vol.%)와 질소와 혼합기체로서 total gas flow rate는 200ml/min으로 고정시켰다. Grain Model을 사용하여 실험데이터를 분석한 결과 전화율이 낮을 때 zinc ferrite와 황화수소 반응의 율속단계는 화학반응이었고 황화수소 농도에 대해 1차 반응이었다. 실험한 흡착제 중 10 atomic %의 $Fe_{2}O_{3}$를 첨가하여 제조한 zinc ferrite형 흡착제가 반응속도, 흡착능, 그리고 재생성면에서 우수한 흡착제로 밝혀졌다.

  • PDF

Role of Plant Extracts to Remove Hydrogen Sulfide in the Air-Lifter Reactor (Air-lift 반응기내 황화수소제거시 식물정유추출물의 역할)

  • Park, Jong-Woo;Park, Young-G.;Kim, Jeong-In
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.421-428
    • /
    • 2010
  • This paper reports on the experimental investigation carried out to evaluate the physical optimal conditions in the absorption column to remove odorous hydrogen sulfide gas. Hydrogen sulfide gas, as a highly undesirable contaminant, is most widely emitted from environmental treatment facilities. The absorbent mixed with natural second metabolites extracted from conifer trees and chemical absorbent of 2-aminoethanol was applied to remove it via chemical neutralization. The absorbent of natural second metabolites was achieved by a removal efficiency of 20-40% by itself depending on the treatment conditions, but the complex absorbent mixed with 0.1% amine chemical provides the removal efficiency of 98%. The optimal removal efficiencies have been examined against the two major parameters of temperature and pH. This study shows that the aqueous solution by natural second metabolites can be used as an appropriate absorbent in the column absorbed for the removal of hydrogen sulfide gas.

Semi-pilot Scaled Biofilter Treatment of Malodorous Waste Air Containing Hydrogen Sulfide and Ammonia: 1. Performance of Biofilter Packed with Media with Immobilized Thiobacillus sp. IW and Return-sludge (황화수소와 암모니아를 함유한 악취폐가스의 세미파일럿 규모 바이오필터 처리: 1. Thiobacillus sp. IW 및 반송슬러지를 고정한 담체를 충전한 바이오필터 운전)

  • Lee, Eun Ju;Park, Hyeri;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.568-574
    • /
    • 2013
  • A semi-pilot biofilter packed with media with immobilized Thiobacillus sp. IW and return sludge, was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia which are major air pollutants emitted from composting factories and many publicly owned treatment works (POTW). At the incipient and middle stages of a semi-pilot biofilter operation, the hydrogen sulfide-removal efficiency behaves regardless of an inlet-load of ammonia. However, the ammonia-removal efficiency decreased as an inlet-load of hydrogen sulfide increased. Nevertheless, at the final stage of the semi-pilot biofilter operation, the ammonia-removal efficiency was not affected by the increase of hydrogen sulfide-inlet load. It is attributed to that a serious acidification of semi-pilot biofilter-media did not occur due to continuous injection of buffer solution at the final stage of the semi-pilot biofilter operation. When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by semi-pilot biofilter, the maximum elimination capacities of hydrogen sulfide and ammonia turned out to be ca. 58 and $30g/m^3/h$, respectively. These maximum elimination capacities were estimated to be ca. 39 and 46% less than those for lab-scaled biofilter-separate elimination of hydrogen sulfide and ammonia, respectively. Thus, for the simultaneous biofilter-treatment of hydrogen sulfide and ammonia, the maximum elimination capacity of ammonia decreased by 7% more than that of hydrogen sulfide.

Physical Properties and Sulfidation Kinetics of Mn-Based Sorbent for Hydrogen Sulfide Removal (황화수소 제거를 위한 망간계 탈황제의 물리적 특성과 황화반응 속도)

  • Oh, Kwang-Joong;Shon, Byung-Hyun;Choi, Eun-Hwa;Yi, Gang Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2067-2076
    • /
    • 2000
  • The experiments have been made to develop manganese-based sorbent(MT, MFT) for the removal of hydrogen sulfide from simulated hot coal gases. Manganese-based sorbents were tested in an ambient-pressure fixed-bed reactor to calculate H2S removal efficiency. and a three hole jet attrition tester to characterize the sorbent physical properties. According to the experimental results of attrition test. the attrition resistance of 5% bentonite containing sorbent was higher than that of 2% bentonite. The attrition resistances of both sorbents increased with induration temperature. Effects of sulfidation temperature. space velocity. and $H_2S$ concentrations on the $H_2S$ removal efficiency were investigated. Experimental results showed that $H_2S$ could be removed from 5,100ppmv to 20ppmv at $450^{\circ}C$, and to 30~65ppmv at $550{\sim}650^{\circ}C$ for both MT/MFT sorbents. As for the change of space velocity, the breakthrough time was decreased with space velocity.

  • PDF

Semi-pilot Scaled Biofilter Treatment of Malodorous Waste Air Containing Hydrogen Sulfide and Ammonia: 2. Performance of Biofilter Packed with Media Inoculated with a Consortium of Separated Microbes (황화수소와 암모니아를 함유한 악취폐가스의 세미파일럿 규모 바이오필터 처리: 2. 분리 미생물들을 접종한 담체를 충전한 바이오필터 운전)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.240-246
    • /
    • 2014
  • A semi-pilot biofilter inoculated with the microbes consortium of Bacillus cereus DAH-1056 and Arthrobacter sp. KDE-0311 was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia. When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by semi-pilot biofilter inoculated with Thiobacillus sp. IW and return-sludge, the removal efficiencies of hydrogen sulfide and ammonia were ca. 80% and ca. 50%, respectively. On the other hand, in this study, the removal efficiencies of hydrogen sulfide and ammonia were ca. 90% and ca. 60%, respectively. Therefore, the removal efficiencies of hydrogen sulfide and ammonia were enhanced by ca. 13% and 20%, respectively, compared to the semipilot biofilter inoculated with Thiobacillus sp. IW and return-sludge. In addition, in this study, the maximum elimination capacities of hydrogen sulfide and ammonia were enhanced by ca. 15% ($8g/m^3/h$) and 10~17% ($3{\sim}5g/m^3/h$), respectively. In this study, it was observed either that in case of even a same inlet load of hydrogen sulfide, a higher concentration of hydrogen sulfide causes more difficulties in treating ammonia containing in waste air than a lower one, or that in case of even a same inlet load of ammonia, a lower concentration of ammonia results in higher removal efficienciy and elimination capacity than a higher one. Even though hydrogen sulfide and ammonia were treated simultaneously by a biofilter in this study, the maximum elimination capacity of hydrogen sulfide in this study exceeded or was similar to that in previous study of biofilter treating only hydrogen sulfide. In addition, this study showed the higher maximum elimination capacity of ammonia than other previous investigation of biofilter treating hydrogen sulfide and ammonia simultaneously.

Semi-pilot Scaled Hybrid Process Treatment of Malodorous Waste Air: Performance of Hybrid System Composed of Biofilter Packed with Media Inoculated with Thiobacillus sp. IW and Return-sludge and Photocatalytic Reactor (악취폐가스의 세미파일럿 규모 하이브리드 공정 처리: Thiobacillus sp. IW 및 반송슬러지를 접종한 담체를 충전한 바이오필터와 광촉매반응기로 구성된 하이브리드시스템의 운전)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.191-198
    • /
    • 2014
  • A semi-pilot hybrid system composed of a photocatalytic reactor and a biofilter was operated under various operating conditions in order to treat malodorous waste air containing both hydrogen sulfide and ammonia which are major air pollutants emitted from composting factories and many publicly owned treatment works (POTW). When both hydrogen sulfide and ammonia contained in malodorous waste air were treated simultaneously by a biofilter system, its performance of ammonia removal was much more poor than that by a biofilter system treating waste air containing only ammonia, unlike its performance of hydrogen sulfide removal. For semi-pilot hybrid system, the removal efficiencies of hydrogen sulfide and ammonia turned out to be ca. 83 and 65%, respectively. Therefore, for semi-pilot hybrid system, the removal efficiencies of hydrogen sulfide and ammonia was increased by ca. 4 and 30%, respectively, compared to those of semi-pilot biofilter system (control). In addition, the maximum elimination capacities of hydrogen sulfide and ammonia for semi-pilot hybrid system turned out to be ca. 60 and $37g/m^3/h$, respectively. These maximum elimination capacities of hydrogen sulfide and ammonia were estimated to be ca. 9.1% and ca. 23.3% greater than those for semi-pilot biofilter system (control), respectively. Therefore, the semi-pilot hybrid system contributed the enhancement of removal efficiency and the maximum elimination capacity of ammonia in a higher degree than that of hydrogen sulfide, compared to the semi-pilot biofilter system.

Effects of Yeast Strains and Fermentation Temperatures in Production of Hydrogen Sulfide During Beer Fermentation (맥주의 발효과정에서 효모와 발효온도가 황화수소의 발생에 미치는 영향)

  • Kim, Young-Ran;Moon, Seung-Tae;Park, Seung-Kook
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.238-242
    • /
    • 2008
  • In this study, hydrogen sulfide ($H_2S$) production was examined during beer fermentation using two ale and two lager yeast strains. In the lager yeast fermentation, a large amount of $H_2S$ was produced in the early fermentation stages when the yeast were actively fermenting wort, indicating a positive relationship between the level of H2S production and the yeast growth rate during fermentation. The ale yeasts produced much lower levels of H2S than the lager yeasts. In the lager fermentation, a higher fermentation temperature shortened the fermentation period, but much higher levels of $H_2S$ were produced at higher temperatures. American pilsner lager yeast fermenting at $15^{\circ}C$ produced a relatively high level of $H_2S$ at the end of fermentation, which would require a longer aging time to remove this malodorous volatile sulfur compound. Not including the English ale strain, which produced a higher level of H2S at lower temperatures, the ale yeast produced lower levels of $H_2S$ at lower temperatures, suggesting that each strain has an optimum fermentation temperature for H2S production.

Reduction of Nitrotoluenes and Simultaneous Removal of Hydrogen Sulfide and Nitrotoluenes by Co3+-centered Hematoporphyrin (포피린의 촉매작용에 의한 니트로톨루엔의 환원 및 니트로톨루엔과 황화수소의 동시 제거)

  • Cho, Jeong-Guk;Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.37-43
    • /
    • 1994
  • Mononitrotoluenes were reduced to aminotoluenes using porphyrin as a catalyst in the presence of several types of reductants including hydrogen sulfide and 1, 4-dithiothreitol(DTT). Intermediates and final products of porphyrin-catalyzed reduction of mononitrotoluenes were identified and a pathway for the reduction of the nitro group to the corresponding amino group was proposed. The optimum pH for the reduction was determined. The catalytic activity of the porphyrin was confirmed by UV/VIS absorption spectra and basic kinetics of porphyrin-catalyzed reduction were studied. Of several types of reductants tested, DTT sodium hydrosulfite, and hydrogen sulfide were seen to give significant reduction of nitrobodies. When hydrogen sulfide was used as a reductant hydrogen sulfide and nitrotoluenes were removed simultaneously.

  • PDF