DOI QR코드

DOI QR Code

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Results of the Precision Monitoring

고품질화 바이오가스 이용 기술지침 마련을 위한 연구(II): 도시가스 및 수송용 - 정밀모니터링 결과 중심으로

  • Received : 2019.03.08
  • Accepted : 2019.03.11
  • Published : 2019.06.30

Abstract

This study carried out on-site investigation and precision monitoring to prepare proper design and operation technical guidelines for the use of bio gas in organic waste resources (fertilizing urine, food waste, food waste, food waste, etc.). According to the government's mid- and long-term policy on bio gasification, the expansion of waste resources is actively being pushed forward. However, facilities that use the biogas produced for urban gas and transportation are still under-efficient. Precision monitoring was carried out for biogasification facilities of organic waste resources in seven locations nationwide. When the results of precision monitoring were summarized with the four-season average, the efficiency analysis of each organic waste resource showed that the organic breakdown rate was 66.3% on average on VS basis. Analysis of biogas characteristics before and after pretreatment revealed that the $H_2S$ average of the entire facility was measured at 949.7 ppm using iron salts and desulfurization (dry, wet) and that the quality refining facility shearing and rear end was 29.0 ppm and 0.3 ppm. The methane content was found to be reduced by 65.6% at the rear of the fire tank, 63.5% at the back and 97.5% at the rear.

본 연구는 유기성폐자원(가축분뇨, 음식물류폐기물, 음식물류폐수 등)의 바이오가스 이용에 대한 적정 설계 및 운전 기술지침서 마련하고자 현장조사와 정밀모니터링 등을 실시하였다. 정부의 중장기 바이오가스화 정책에 따라 폐자원의 자원화 시설 확충이 활발히 추진되고 있다. 하지만 생산된 바이오가스를 이용하여 도시가스 및 수송용으로 활용하는 시설은 효율이 아직은 저조하다. 전국 7개소 유기성폐자원 바이오가스화 시설을 대상으로 정밀모니터링을 실시하였다. 사계절 평균으로 정밀모니터링 결과를 정리하였을 때, 유기성폐자원 별 효율성 분석에서 유기성분해율은 VS기준 평균 66.3 %로 분석되었다. 전처리 전후 바이오가스 성상을 분석한 결과 철염 및 탈황(건식, 습식)을 이용하여 전체 시설의 $H_2S$ 평균은 949.7 ppm으로 측정되었으며, 고품질화 정제설비 전단 및 후단에서 29.0 ppm과 0.3 ppm으로 나타났다. 메탄 함량은 소화조 후단에서 65.6 %, 고품질화 정제설비 전단 및 후단에서 63.5 %와 97.5 %까지 감소하는 것을 확인하였다.

Keywords

DOGSBE_2019_v27n2_57_f0001.png 이미지

Fig. 5. Results of moisture contents, FS and VS(four seasons).

DOGSBE_2019_v27n2_57_f0002.png 이미지

Fig. 7. Results of CODcr in biogasification facilities(four seasons).

DOGSBE_2019_v27n2_57_f0003.png 이미지

Fig. 9. Results of VFA in biogasification facilities (four seasons).

DOGSBE_2019_v27n2_57_f0004.png 이미지

Fig. 10. Results of VFAs (before digester) by season.

DOGSBE_2019_v27n2_57_f0005.png 이미지

Fig. 11. Results of VFAs (after digester) by season.

DOGSBE_2019_v27n2_57_f0006.png 이미지

Fig. 12. Results of C/N ratio in biogasification facilities (four seasons).

DOGSBE_2019_v27n2_57_f0007.png 이미지

Fig. 14. Measurement of biogas (CH4, CO2, O2).

DOGSBE_2019_v27n2_57_f0008.png 이미지

Fig. 15. Measurement of biogas (NH3, H2S).

DOGSBE_2019_v27n2_57_f0009.png 이미지

Fig. 6. Results of VS removal efficiency by season.

DOGSBE_2019_v27n2_57_f0010.png 이미지

Fig. 8. Results of CODcr removal efficiency by season.

Table 4. Results of TS, VS and VS Removal Efficiency(Four Seasons)

DOGSBE_2019_v27n2_57_t0001.png 이미지

Table 5. Results of CODcr in Biogasification Facilities(Four Seasons)

DOGSBE_2019_v27n2_57_t0002.png 이미지

Table 6. Results of Nitrogen and Phosphorus in Biogasification Facilities(Four Seasons)

DOGSBE_2019_v27n2_57_t0003.png 이미지

Table 7. Results of VFA and Removal Efficiency in Biogasification Facilities(Four Seasons)

DOGSBE_2019_v27n2_57_t0004.png 이미지

Table 8. Results of Elemental Contents Ratio in Biogasification Facilities(Four Seasons)

DOGSBE_2019_v27n2_57_t0005.png 이미지

Table 9. Estimation of Biogas and Methane Production by Organic Wastes Inflow Rate

DOGSBE_2019_v27n2_57_t0006.png 이미지

Table 10. Measurement of Biogas by Facility in After-digester(AD)

DOGSBE_2019_v27n2_57_t0007.png 이미지

Table 11. Measurement of Biogas by Facility in Before-upgrading System(BU)

DOGSBE_2019_v27n2_57_t0009.png 이미지

Table 12. Measurement of Biogas by Facility in After-upgrading System(AU)

DOGSBE_2019_v27n2_57_t0010.png 이미지

Table 13. Measurement of Biogas Moisture by Facility(Summer, Autumn) in After Digester(AD)

DOGSBE_2019_v27n2_57_t0011.png 이미지

Table 14. Measurement of Biogas Moisture by Facility(Summer, Autumn) in Before Upgrading System

DOGSBE_2019_v27n2_57_t0012.png 이미지

References

  1. National Biogas Strategy(Energigas Sverige), National Biogas Strategy 2.0. (2018).
  2. EBA, European biomethane map infrastructure for biomethane production 2018. (2018).
  3. Ministry of Environment, 2016 The status of waste generation and treatment in Korea. (2018).
  4. Ministry of Environment, Official testing method on wastes, Korea. (2017).
  5. Ministry of Environment, Official testing method on water, Korea. (2015).
  6. American Public Health Association, American Water Works Association, Water Environment Federation (USA), Standard methods for the examination of water and wastewater. (1998).
  7. Tchobanoglous, G., Theisen, H., Vigil, S., Integrated solid waste management, McGraw-Hill. (1993).
  8. Khanal, S. K., Anaerobic biotechnology for bioenergy production principles and applications, Wiley-Blackwell. (2008).
  9. Korea Gas Safety Corporation, Research on the establishment plan of proper quality standard of alternative natural gas for the generation of electricity, Korea. (2010).
  10. Yen, H.W., Brune, D.E., Anaerobic co-digestion of algal sludge and waste paper to produce methane, Journal of Bioresource Technology. (2007).
  11. Chen, Y., Cheng, J., Creamer, K.S., Inhibition of anaerobic digestion process: a review, Journal of Bioresource Technology. (2008).
  12. National Institute of Environmental Research, Translation of guidelines for biogas production and use in Germany, Korea. (2014).
  13. Muyzer, G. The ecology and biotechnology of sulphate-reducing bacteria. (2008).
  14. Chen, S., Dong, X., Proteiniphilum acetatigenes gen. nov., sp. nov., from UASB reactor treating brewery wastewater, International Journal of Systematic and Evolutionary Microbiology. (2005).
  15. Imachi, Pelotomaculum thermopropionicum gen. nov., sp. nov., anaerobic, thermophilic, syntrophic propionate-oxdizing bacteriun, international Journal of Systematic and Evolutionary Microbiology. (2002).