DOI QR코드

DOI QR Code

Fabrication of Micro-Porous Membrane via a Solution Spreading Phase Inversion Method

용액 퍼짐 상분리법을 통한 마이크로 기공 분리막 제조

  • Choi, Ook (Research Institute of Basic Sciences, Incheon National University) ;
  • Park, Chul Ho (Jeju Global Research Cesnter (JGRC), Korea Institute of Energy Research (KIER))
  • 최욱 (인천대학교 기초과학연구소) ;
  • 박철호 (한국에너지기술연구원 제주글로벌연구센터)
  • Received : 2019.03.19
  • Accepted : 2019.04.29
  • Published : 2019.04.30

Abstract

Porous membranes are widely used in industry for removing particulate matter. Unlike conventional porous membrane fabrication methods, the solution spreading phase separation method can form pores very simply. The first step is to wet the mesh with the support layer, then to let the polysulfone solution flow into a solvent without water. The solvent is readily vaporized and the polysulfone is made into a thin film. When the polysulfone solution is mixed with water to form pores, the pore size can be adjusted according to the concentration ratio of the polysulfone solution. The thickness of the membrane is easily controlled by the concentration of the solution. The porous separator has the formation of meshes intact and is very useful for forming a three-dimensional structure. The solution spreading phase separation method proposed in this study is characterized by its high cost competitiveness compared with conventional membranes due to its low production cost and easy process control.

다공성 분리막은 입자성 물질을 제거하는데 산업적으로 다양하게 응용되고 있다. 기존 다공성 분리막 제작 방법과 다르게, 용액퍼짐 상분리법은 매우 간단하게 기공을 형성할 수 있다. 먼저 지지층으로 메쉬 위에 물을 적신 후, 물과 혼합되지 않은 용매에 폴리설폰 용액을 흘려준다. 이때 물과 혼합되지 않은 용매는 쉽게 기화되어 폴리설폰은 얇은 막으로 만들어지게 된다. 기공을 형성하기 위해 폴리설폰 용액에 물과 혼합할 수 있는 물질을 넣게 되면, 넣어주는 농도 비율에 따라 기공크기를 조절할 수 있게 된다. 막의 두께는 쉽게 용액의 농도로 조절이 된다. 다공성 분리막은 메쉬의 형성을 그대로 유지하고 있어 3차원 구조체를 형성하는데 매우 유용하다. 본 연구에서 제시된 용액 퍼짐 상분리법은 매우 낮은 생산단가와 쉬운 공정조절에 의해 기존 분리막에 비해 높은 가격경쟁력을 가질 수 있는 특징을 보이고 있다.

Keywords

References

  1. L. R. Fukumoto, P. Delaquis, and B. Girard, "Microfiltration and ultrafiltration ceramic membranes for apple juice clarification", J. Food Sci., 65, 1 (1998).
  2. B. J. Wang, T. C. Wei, and Z. R. Yu, "Effect of operating temperature on component distribution of West Indian cherry juice in a microfiltration system", LWT - Food Sci. Technol., 35, 683 (2005).
  3. B. Razi, A. Aroujalian, and M. Fathizadeh, "Modeling of fouling layer deposition in cross-flow microfiltration during tomato juice clarification", Food Bioprod. Process., 90, 841 (2012). https://doi.org/10.1016/j.fbp.2012.05.004
  4. J. Caro, "Basic principles of membrane technology", Zeitschrift Für Phys. Chemie., 203, 1 (2011).
  5. M. Sadrzadeh and S. Bhattacharjee, "Rational design of phase inversion membranes by tailoring thermodynamics and kinetics of casting solution using polymer additives", J. Memb. Sci., 441, 31 (2013) doi: 10.1016/j.memsci.2013.04.009.
  6. J. R. Werber, C. O. Osuji, and M. Elimelech, "Materials for next-generation desalination and water purification membranes", Nat. Rev. Mater., 1, 16018 (2016) doi:10.1038/natrevmats.2016.18.
  7. A. L. Zydney, Membrane handbook edited by W. S. Winston Ho, and Kamalesh K. Sirkar, "Van nostrand reinhold", New York, 1992, 954 pp. 131.95, AIChE J., 41, 954 (2004).
  8. B. Wang, J. Ji, C. Chen, and K. Li, "Porous membranes prepared by a combined crystallisation and diffusion (CCD) method: Study on formation mechanisms", J. Memb. Sci., 548, 136 (2018). https://doi.org/10.1016/j.memsci.2017.11.005
  9. W. Choi, P. G. Ingole, J. S. Park, D. W. Lee, J. H. Kim, and H. K. Lee, "$H_2$/CO mixture gas separation using composite hollow fiber membranes prepared by interfacial polymerization method", Chem. Eng. Res. Des., 102, 297 (2015). https://doi.org/10.1016/j.cherd.2015.06.037
  10. W. Choi, P. G. Ingole, H. Li, S. Y. Park, J. H. Kim, H. K. Lee, and I. H. Baek, "Facilitated transport hollow fiber membrane prepared by t-Bu CoSalen for $O_2/N_2$ separation", Microchem. J., 132, 36 (2017). https://doi.org/10.1016/j.microc.2017.01.001
  11. S. ichi Sawada, C. Ursino, F. Galiano, S. Simone, E. Drioli, and A. Figoli, "Effect of citrate-based non-toxic solvents on poly(vinylidene fluoride) membrane preparation via thermally induced phase separation", J. Memb. Sci., 493, 232 (2015). https://doi.org/10.1016/j.memsci.2015.07.003
  12. J. T. Jung, J. F. Kim, H. H. Wang, E. di Nicolo, E. Drioli, and Y. M. Lee, "Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS)", J. Memb. Sci., 514, 250 (2016). https://doi.org/10.1016/j.memsci.2016.04.069
  13. D. Mackay and C. D. McAuliffe, "Fate of hydrocarbons discharged at sea", Oil Chem. Pollut., 5, 1 (1989). https://doi.org/10.1016/S0269-8579(89)80002-4
  14. M. L. Spaulding, "A state-of-the-art review of oil spill trajectory and fate modeling", Oil Chem. Pollut., 4, 39 (1988). https://doi.org/10.1016/S0269-8579(88)80009-1
  15. H. Bin Li, W. Y. Shi, Y. F. Zhang, D. Q. Liu, and X. F. Liu, "Effects of additives on the morphology and performance of PPTA/PVDF in situ blend UF membrane", Polymers., 6, 1846 (2014). https://doi.org/10.3390/polym6061846
  16. M.-T. Lee, W.-C. Hung, F.-Y. Chen, and H. W. Huang, "Mechanism and kinetics of pore formation in membranes by water-soluble amphipathic peptides", Acta Crystallogr. Sect. A Found. Crystallogr., 64, 5087 (2015).