DOI QR코드

DOI QR Code

Potassium Pentane-1,3,3,5-tetracarboxylate Draw Solute Synthesis and Application of Forward Osmosis Process

Potassium Pentane-1,3,3,5-tetracarboxylate 유도용질 합성 및 이를 이용한 정삼투 공정 응용

  • Lee, Hye-Jin (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Choi, Jin-Il (Center for Small & Medium Enterprises Support, Technology Commercialization Division, Korea Research Institute of Chemical Technology) ;
  • Kwon, Sei (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, In-Chul (Center for Membrane, Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 이혜진 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 최진일 (한국화학연구원 기술사업화본부 중소기업지원센터) ;
  • 권세이 (한국화학연구원 그린화학소재연구본부 분리막연구센터) ;
  • 김인철 (한국화학연구원 그린화학소재연구본부 분리막연구센터)
  • Received : 2019.04.09
  • Accepted : 2019.04.29
  • Published : 2019.04.30

Abstract

An organic citrate series draw solute was synthesized using diethyl malonate for forward osmosis. The structure of the final compound potassium pentane-1,3,3,5-tetracarboxylate was confirmed by $^1H-NMR$ and $^{13}C-NMR$ analysis. Osmotic pressure, solubility, water permeability and reverse salt flux were measured for the properties of the draw solute. Forward osmosis results showed that the draw solute exhibited higher water flux than other draw solutes of trisodium citrate and tripotassium citrate. Reverse salt flux of all the organic daw solutes was much lower than that of NaCl. The osmotic pressure of the synthesized draw solute was 25% lower than that of NaCl. The solubility of the draw solute was 317 g/ 100 g water, which is 8.8 times higher than that of NaCl. A commercialized nanofiltration membrane was used for the recovery of the draw solute. The draw solute could be effectively recovered at low pressure.

정삼투 공정에 유용한 유도용질로서 diethyl malonate를 사용한 citrate 계열의 유기 화합물을 합성하였다. 최종적으로 얻은 potassium pentane-1,3,3,5-tetracarboxylate는 $^1H-NMR$$^{13}C-NMR$을 통하여 확인하였다. 유도용질의 물성을 확인하기 위해 삼투압, 용해도, 수투과도, 역염 투과도를 측정하였다. 합성한 유도용액을 사용하여 정삼투 공정을 진행한 결과, 동일한 citrate 계열인 trisodium citrate 및 tripotassium citrate보다 높은 수투과량을 나타내었으며 염의 역확산 정도는 NaCl에 비하여 매우 낮은 값을 나타내었다. 합성된 유도용질의 삼투압은 NaCl보다 약 25% 낮았으나 물에 대한 용해도는 NaCl의 8.8배인 317 g/100 g water의 값을 나타내었다. 정삼투 종료 후 유도용질의 회수를 위해 상용화된 나노여과막을 사용하였고, 낮은 압력에서 효율적으로 회수가 가능하였다.

Keywords

References

  1. T.-S. Chung, S. Zhang, K. Y. Wang, J. Su, and M. M. Ling, "Forward osmosis processes: Yesterday, today and tomorrow", Desalination, 287, 78 (2012). https://doi.org/10.1016/j.desal.2010.12.019
  2. S. Qi, W. Li, Y. Zhao, N. Ma, J. Wei, T. W. Chin, and C. T. Tang, "Influence of the properties of layer- by-layer active layers on forward osmosis performance", J. Membr. Sci., 423, 536 (2012). https://doi.org/10.1016/j.memsci.2012.09.009
  3. N. J. Jeong, S.-G. Kim, and H.-W. Lee, "Evaluating the performance of draw solutions in forward osmosis desalination using fertilizer as draw solution", Membr. J., 24, 400 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.5.400
  4. J. Huang, J. Xiong, Q. Long, L. Shen, and Y. Wang, "Evaluation of food additive sodium phytate as a novel draw solution for forward osmosis", Desalination, 448, 87 (2018). https://doi.org/10.1016/j.desal.2018.10.004
  5. D.-E. Kwon and J. H. Kim, "Forward osmosis membrane to treat effluent from anaerobic fluidized bed bioreactor for wastewater reuse application", Membr. J., 28, 196 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.3.196
  6. Y. Wang, X. Li, C. Cheng, Y. HE, J. Pan, and T. Xu, "Second interfacial polymerization on polyamide surface using aliphatic diamine with improved performance of TFC FO membranes", J. Membr. Sci., 498, 30 (2016). https://doi.org/10.1016/j.memsci.2015.09.067
  7. J. Suand and T. S. Chung, "Sublayer structure and reflection coefficient and their effects on concentration polarization and membrane performance in FO process", J. Membr. Sci., 376, 214 (2011). https://doi.org/10.1016/j.memsci.2011.04.031
  8. C. Suh and S. Lee, "Modeling reverse draw solute flux in forward osmosis with external concentration polarization in both sides of the draw and feed solution", J. Membr. Sci., 427, 365 (2013). https://doi.org/10.1016/j.memsci.2012.08.033
  9. C. H. Tnam and H. Y. Sg, "Revised external and internal concentration polarization models to improve flux prediction in forward osmosis process", Desalination, 309, 125 (2013). https://doi.org/10.1016/j.desal.2012.09.022
  10. Y. Wu, W. Peng, C. Y. Tang, Q. S. Fu, and S. Nie, "Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module", J. Membr. Sci., 348, 298 (2010). https://doi.org/10.1016/j.memsci.2009.11.013
  11. M. Qasim, F. Mohammed, A. Aidan, and N. Darwish, "Forward osmosis desalination using ferric sulfate draw solute", Desalination, 423, 12 (2017). https://doi.org/10.1016/j.desal.2017.08.019
  12. T. Y. Cath, A. E. Childress, and M. Elimelech, "Forward osmosis: Principles, applications, and recent developments", J. Membr. Sci., 281, 70 (2006). https://doi.org/10.1016/j.memsci.2006.05.048
  13. C. H. Tnam and H. Y. Sg, "Revised external and internal concentration polarization models to improve flux prediction in forward osmosis process", Desalination, 309, 125 (2013). https://doi.org/10.1016/j.desal.2012.09.022
  14. Q. C. Ge, M. M. Ling, and T. S. Chung, "Draw solution for forward osmosis process: Developments, challenges, and prospects for the future", J. Membr. Sci., 442, 225 (2013). https://doi.org/10.1016/j.memsci.2013.03.046
  15. H. J. Lee, J. I. Choi, S. Kwon, and I. C. Kim, "Synthesis of n-nitrilotris(methylene) phosphonic acid potassium salt as a draw solute in forward osmosis process", Membr. J., 28, 368 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.5.368
  16. A. Achilli, T. Y. Cath, and A. E. Marchand, and A. E. Childress, "The forward osmosis membrane bioreactor: A low fouling alternative to MBR process", Desalination, 239, 10 (2009). https://doi.org/10.1016/j.desal.2008.02.022
  17. A. Achilli, T. Y. Cath, and A. E. Childress, "Selection of inorganic-based draw solutions for forward osmosis application", J. Membr. Sci., 364, 233 (2010). https://doi.org/10.1016/j.memsci.2010.08.010
  18. J. Duan, E. Litwiller, S. H. Choi, and I. Pinnau, "Evaluation of sodium lignin sulfonate as draw solute in forward osmosis for desert restoration", J. Membr. Sci., 453, 463 (2014). https://doi.org/10.1016/j.memsci.2013.11.029
  19. H. J. Lee, J. I. Choi, S. Kwon, and I. C. Kim, "Synthesis of new draw solute based on polyehtyleneimine for forward osmosis", J. Membr., 28, 286 (2018). https://doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.4.286
  20. H. Luo, Q. Wang, T. C. Zhang, T. Tao, A. Zhou, L. Chen, and X. Bie, "A review on the recovery methods of draw solutes in forward osmosis", J. Water Process Eng., 4, 212 (2014). https://doi.org/10.1016/j.jwpe.2014.10.006
  21. J. R. McCutcheon and M. Elimelech, "Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis", J. Membr. Sci., 284, 237 (2006). https://doi.org/10.1016/j.memsci.2006.07.049
  22. G. T. Gray, J. R. McCutcheon, and M. Elimeleh, "Internal concentration polarization in forward osmosis: Role of membrane orientation", Desalination, 197, 1 (2006). https://doi.org/10.1016/j.desal.2006.02.003
  23. M. L. Stone, C. Rae, F. F. Stewart, and A. D. Wilson, "Switchable polarity solvents as draw solutes for forward osmosis", Desalination, 312, 124 (2013). https://doi.org/10.1016/j.desal.2012.07.034
  24. N. Sato, Y. Sato, and S. Yanase, "Forward osmosis using dimethyl ether as a draw solute", Desalination, 349, 102 (2014). https://doi.org/10.1016/j.desal.2014.06.028
  25. T. Alejo, M. Arruebo, V. Carcelen, V. M. Monsalvo, and V. Sebastian, "Advances in draw solutes for forward osmosis: Hybrid organic-inorganic nanoparticles and conventional solutes", Chem. Eng. J., 309, 738 (2017). https://doi.org/10.1016/j.cej.2016.10.079
  26. N. T. Hau, S. S. Chen, N. C. Ngyen, K. Z. Huang, H. H. Ngo, and W. Guo, "Exploration of EDTA sodium salts as novel draw solution in forward osmosis process for dewatering of high nutrient sludge", J. Membr. Sci., 455, 305 (2014). https://doi.org/10.1016/j.memsci.2013.12.068
  27. Q. Ge, J. Su, G. L. Amy, and T. S. Chung, "Exploration of polyelectrolytes as draw solutes in forward osmosis processes", Water Res., 46, 1318 (2012). https://doi.org/10.1016/j.watres.2011.12.043
  28. E. Tian, C. Hu, Y. Qin, Y. Ren, X. Wang, W. Wang, P. Xiao, and X. Yang, "A study of poly(sodium 4-styrenesulfonate) as draw solute in forward osmosis", Desalination, 360, 130 (2015). https://doi.org/10.1016/j.desal.2015.01.001
  29. S. K. Yen, F. Mehnas, N. Haja, M. Su, K. Y. Wang, and T. S. Chung, "Study of draw solutes using 2-methylimidazole-based compounds in forward osmosis", J. Membr. Sci., 364, 242 (2010). https://doi.org/10.1016/j.memsci.2010.08.021
  30. D. Zhao, P. Wang, Q. Zhao, N. Chen, and X. Lu, "Thermoresponsive copolymer-based draw solution for seawater desalination in a combined process of forward osmosis and membrane distillation", Desalination, 348, 26 (2014). https://doi.org/10.1016/j.desal.2014.06.009
  31. M. L. Stone, A. D. Wilson, M. K. Harrup, and F. F. Stewart, "An initial study of hexavalent phosphazene salts as draw solute in forward osmosis", Desalination, 312, 130 (2013). https://doi.org/10.1016/j.desal.2012.09.030
  32. G. Gwak, G. Jung, S. Han, and S. Hong, "Evaluation of poly (aspartic acid sodium salt) as a draw solute for forward osmosis", Water Res., 80, 294 (2015). https://doi.org/10.1016/j.watres.2015.04.041
  33. H. Zhang, J. Li, H. Cui, H. Li, and F. Yang, "Forward osmosis using electric-reponsive polymer hydrogels as draw agents: Influence of freezing- thawing cycles, voltage, feed solutions on process performance", Chem. Eng. J., 259, 814 (2015). https://doi.org/10.1016/j.cej.2014.08.065
  34. Y. Hartanto, S. Yun, B. Jin, and S. Dai, "Functionalized thermo-responsive microgels for high performance forward osmosis desalination", Water Res., 70, 385 (2015). https://doi.org/10.1016/j.watres.2014.12.023
  35. R. Ou, Y. Wang, H. Wang, and T. Xu, "Thermo- sensitive polyelectrolytes as draw solutions in forward osmosis process", Desalination, 318, 48 (2013). https://doi.org/10.1016/j.desal.2013.03.022
  36. T. Alejo, M. Arruebo, V. Carcelen, V. M. Monsalvo, and V. Sebastian, "Advances in draw solutes for forward osmosis: Hybrid organic-inorganic nanoparticles and conventional solutes", Chem. Eng. J., 309, 738 (2017). https://doi.org/10.1016/j.cej.2016.10.079
  37. B. Jun, S. Han, Y. Kim, N. Nga, H. Park, and Y. Kwon, "Conditions for ideal draw solutes and current research trends in the draw solutes for forward osmosis process", Membr. J., 25, 132 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.132
  38. Q. Ge, J. Su, T.-S. Chung, and G. Amy, "Hydrophilic superparamagnetic nanoparticles: Synthesis, characterization, and performance in forward osmosis preocesses", Ind. Eng. Chem. Res., 50, 382 (2011). https://doi.org/10.1021/ie101013w
  39. M. M. Ling, K. Y. Wang, and T. S. Chung, "Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse", Ind. Eng. Chem. Res., 49, 5869 (2010). https://doi.org/10.1021/ie100438x
  40. Y. Na, S. Yang, and S. Lee, "Evaluation of citrate- coated magnetic nanoparticles as draw solute for forward osmosis", Desalination, 347, 34 (2014). https://doi.org/10.1016/j.desal.2014.04.032
  41. D. Roy, M. Rahni, P. Pierre, and V. Yargeau, "Forward osmosis for the concentration and reuse of process saline wastewater", Chem. Eng. J., 287, 277 (2016). https://doi.org/10.1016/j.cej.2015.11.012
  42. R. Alnaizy, A. Aidan, and M. Qasim, "Draw solute recovery by metathesis precipitation in forward osmosis desalination", Desalin. Water Treat., 51, 1 (2013). https://doi.org/10.1080/19443994.2012.704744
  43. R. Alnaizy, A. Aidan, and M. Qasim, "Copper sulfate as draw solute in forward osmosis desalination", J. Environ. Chem. Eng., 1, 424 (2013). https://doi.org/10.1016/j.jece.2013.06.005
  44. Q. Ge, F. Fu, and T. S. Chung, "Ferric and cobaltous hydroacid complexes for forward osmosis (FO) processes", Water Res., 58, 230 (2014). https://doi.org/10.1016/j.watres.2014.03.024
  45. H. T. Nguyen, S. S. Chen, N. C. Nguyen, H. H. Ngo, W. Guo, and C. W. Li, "Exploring an innovative surfactant and phosphate-based draw solution for forward osmosis desalination", J. Membr. Sci., 489, 212 (2015). https://doi.org/10.1016/j.memsci.2015.03.085
  46. G. J. Shugar and J. T. Ballinger, "Chemical technicians ready reference handbook", 3rd ed., McGraw-Hill, New York (1990).