DOI QR코드

DOI QR Code

Restoration of Membrane Performance for Damaged Reverse Osmosis Membranes through in-situ Healing

손상된 역삼투막의 in-situ 힐링을 통한 막 성능 복원

  • Yun, Won Seob (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Cho, Young Ju (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 윤원섭 (한남대학교 화공신소재공학과) ;
  • 임지원 (한남대학교 화공신소재공학과) ;
  • 조영주 (한남대학교 화공신소재공학과)
  • Received : 2019.04.04
  • Accepted : 2019.04.23
  • Published : 2019.04.30

Abstract

The purpose of this paper is whether or not the in-situ restoration of the reverse osmosis (RO) membranes which its membrane function is lost is possible. The damaged RO membranes are double coated through the salting-out method by the poly(styrene sulfonic acid) sodium salt as the cationic exchange polymer and the polyethyleneimine as the anionic exchange polymer and also conducted the opposite order of the coating materials. And according to the concentration, time and ionic strength, the flux and rejection are measured for the coated membranes. Then the best coating condition is to apply for the RO membrane module of the household water purifier to know the possibility of the in-situ restoration for the commercial module. When the condition of the PEI 30,000 ppm (IS = 0.1)/PSSA 20,000 ppm (IS = 0.7) is applied, the rejection was enhance from 69% for the damaged module to 86% (90% for the pristine module).

본 연구는 분리막 성능 저하로 기능을 상실한 역삼투막의 힐링을 통한 복원의 가능성을 알아보고자 하는 데에 목적이 있다. 손상된 막은 양이온고분자인 poly(styrene sulfonic acid) sodium salt (PSSA)와 음이온고분자인 polyethyleneimine(PEI)를 염석법을 이용하여 이중으로 코팅했으며 또한 소재의 순서를 바꿔 코팅을 수행했다. 그리고 농도, 시간, 이온세기 등에 따라 코팅된 역삼투막의 투과도와 배제율을 측정하여 손상된 막으로부터 복원된 정도를 알아보았다. 또한 역삼투 평막에서 복원이 우수한 조건을 가정용 정수기 모듈에 적용하여 손상된 역삼투막 모듈에 또한 대하여 복원 가능성을 알아보았다. 이로부터 PEI 30,000 ppm (IS = 0.1)/PSSA 20,000 ppm (IS = 0.7) 코팅 조건에서 역삼투막 모듈에 적용했을 때 염 배제율은 69%에서 86% (손상 전 모듈의 경우 90%)까지 복원되었다.

Keywords

References

  1. L. F. Greenlee, D. F. Lawler, B. D. Freeman, B. Marrot, and P. Moulin, "Reverse osmosis desalination: Water sources, technology, and today's challenges", Water Res., 43, 2317 (2009). https://doi.org/10.1016/j.watres.2009.03.010
  2. C. Fritzmann, J. Löwenberg, T. Wintgens, and T. Melin, "State-of-the-art of reverse osmosis desalination", Desalination, 216, 1 (2007). https://doi.org/10.1016/j.desal.2006.12.009
  3. M. A. Alghoul, P. Poovanaesvaran, K. Sopian, and M. Y. Sulaiman, "Review of brackish water reverse osmosis (BWRO) system designs", Renew. Sust. Energ. Rev., 13, 2661 (2009). https://doi.org/10.1016/j.rser.2009.03.013
  4. D. Attarde, M. Jain, K. Chaudhary, and S. K. Gupta, "Osmotically driven membrane processes by using a spiral wound module-modeling, experimentation and numerical parameter estimation", Desalination, 361, 81 (2015). https://doi.org/10.1016/j.desal.2015.01.025
  5. M. G. Jeffrey and T. C. Hui, "Thermodynamic perspective for the specific energy consumption of seawater desalination", Desalination, 386, 13 (2016). https://doi.org/10.1016/j.desal.2016.02.030
  6. K. P. Lee, T. C. Arnot, and D. Mattia, "A review of reverse osmosis membrane materials for desalination- development to date and future potential", J. Membr. Sci., 370, 1 (2011). https://doi.org/10.1016/j.memsci.2010.12.036
  7. D. Li and H. T. Wang, "Recent developments in reverse osmosis desalination membranes", Journal of Materials Chemistry, 20, 4551 (2010). https://doi.org/10.1039/b924553g
  8. A. Subramani and E. M. V. Hoek, "Biofilm formation, cleaning, re-formation on polyamide composite membranes", Desalination, 257, 79 (2010).
  9. Q. She, R. Wang, A. G. Fane, and C. Y. Tang, "Membrane fouling in osmotically driven membrane processes: A review", J. Membr. Sci., 499, 201 (2016). https://doi.org/10.1016/j.memsci.2015.10.040
  10. N. Pena, S. Gallego, F. D. Vigo, and S. P. Chesters, "Evaluating impact of fouling on reverse osmosis membranes performance", Desalin. Water Treat., 51, 958 (2012). https://doi.org/10.1080/19443994.2012.699509
  11. L. D. Tijing, Y. C. Woo, J. S. Choi, S. Lee, S. H. Kim, and H. K. Shon, "Fouling and its control in membrane distillation-a review", J. Membr. Sci., 475, 215 (2015). https://doi.org/10.1016/j.memsci.2014.09.042
  12. S. Zhao, L. Zou, C. Y. Tang, and D. Mulcahy, "Recent developments in forward osmosis: Opportunities and challenges", J. Membr. Sci., 396, 1 (2012). https://doi.org/10.1016/j.memsci.2011.12.023
  13. C. Klaysom, T. Y. Cath, T. Depuydt, and I. F. J. Vankelecom, "Forward and pressure retarded osmosis: Potential solutions for global challenges in energy and water supply", Chem. Soc. Rev., 42, 6959 (2013). https://doi.org/10.1039/c3cs60051c
  14. E. J. W. Verwey and J. T. G. Overbeek, "Theory of the stability of lyphobic colloids", J. Phys. Chem., 51, 631 (1947). https://doi.org/10.1021/j150453a001
  15. J. Glater, S.-K. Hong, and M. Elimelech, "The search for a chlorine-resistant reverse osmosis membrane", Desalination, 95, 325 (1994). https://doi.org/10.1016/0011-9164(94)00068-9
  16. Y. N. Kwon and J. O. Leckie, "Hypochlorite degradation of crosslinked polyamide membranes I. Changes in chemical/morphological properties", J. Membr. Sci., 283, 21 (2006). https://doi.org/10.1016/j.memsci.2006.06.008
  17. S. Surawanvijit, A. Rahardianto, and Y. Cohen, "An integrated approach for characterization of polyamide reverse osmosis membrane degradation due to exposure to free chlorine", J. Membr. Sci., 15, 164 (2016).
  18. E. M. Vrijenhoek, S. K. Hong, and M. Elimelech, "Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes", J. Membr. Sci., 188, 115 (2001). https://doi.org/10.1016/S0376-7388(01)00376-3
  19. M. Hirose, H. Ito, and Y. Kamiyama, "Effect of skin layer surface structures on the flux behaviour of RO membranes", J. Membr. Sci., 121, 209 (1996). https://doi.org/10.1016/S0376-7388(96)00181-0
  20. S. Y. Kwak, M. O. Yeom, I. J. Roh, D. Y. Kim, and J. J. Kim, "Correlations of chemical structure, atomic force microscopy (AFM) morphology, and reverse osmosis (RO) characteristics in aromatic polyester high-flux RO membranes", J. Membr. Sci., 132, 183 (1997). https://doi.org/10.1016/S0376-7388(97)00077-X
  21. S. Y. Kwak and D. W. Ihm, "Use of atomic force microscopy and solid-state NMR spectroscopy to characterize structure-property-performance correlation in high-flux reverse osmosis (RO) membranes", J. Membr. Sci., 158, 143 (1999). https://doi.org/10.1016/S0376-7388(99)00039-3
  22. T. Knoell, J. Safarik, T. Cormack, R. Riley, S. W. Lin, and H. Ridgway, "Biofouling potentials of microporous polysulfone membranes containing a sulfonated polyether-ethersulfone/polyethersulfone block copolymer: Correlation of membrane surface properties with bacterial attachment", J. Membr. Sci., 157, 117 (1999). https://doi.org/10.1016/S0376-7388(98)00365-2
  23. J. W. Rhim, B. S. Lee, H. H. Park, and C. H. Seo, "Preparation and characterization of chlorine resistant thin film composite polyamide membranes via the adsorption of various hydrophilic polymers onto membrane surfaces", Macromol. Res., 22, 361 (2014). https://doi.org/10.1007/s13233-014-2051-8
  24. C. J. Park, S. P. Kim, S. I. Cheong, and J. W. Rhim, "Studies on the fouling reduction by coating of cationic exchange polymer onto reverse osmosis membrane surface", Polym. Korea, 36, 810 (2012). https://doi.org/10.7317/pk.2012.36.6.810
  25. S. I. Cheong, B. A. Kim, H. M. Lee, and J. W. Rhim, "Physical adsorption of water-soluble polymers on hydrophobic polymeric membrane surfaces via salting- out effect", Macromol. Res., 21, 629 (2013). https://doi.org/10.1007/s13233-013-1075-9
  26. Y. Zhang, J. W. Rhim, and X. Feng, "Improving the stability of layer-by-layer self-assembled membranes for dehydration of alcohol and diol", J. Membr. Sci., 444, 22 (2013). https://doi.org/10.1016/j.memsci.2013.05.011