• Title/Summary/Keyword: ZnO substrates

Search Result 477, Processing Time 0.029 seconds

Morphological evolution of ZnO nanowires using varioussubstrates

  • Kar, J.P.;DAS, S.N.;Choi, J.H.;Myoung, J.M.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.27.1-27.1
    • /
    • 2009
  • In recent years, ZnO nanostructures have drawn considerable attentions for the development of futuristic electronic devices due to their superior structural and optical properties. As the growth of ZnO nanowires by MOCVD is a bottom-up technique, the nature of substrates has a vital role for the dimension and alignment of the nanowires. However, in the pursuit of next generation ZnO based nanodevices, it would be highly preferred if well-ordered ZnO nanowires could be obtained on various substrates like sapphire, silicon, glass etc. Vertically aligned nanowires were grown on A and C-plane sapphire substrates, where as nanopencils were obtained on R-plane sapphire substrates. In addition, C-axis oriented vertical nanowires were also found using an interfacial layer(aluminum nitride film) on silicon substrates. On the other hand, long nanowires were found on Ga-doped ZnO film on glass substrates. Structural and optical properties of the ZnO nanowires on various substrates were also investigated.

  • PDF

Comparison of the optical properties of ZnO thin films grown on various substrates by pulsed laser deposition (기판 변화에 따른 ZHO 박막의 광학특성 연구)

  • 배상혁;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.828-830
    • /
    • 2000
  • Various substrates were compared for the investigation of the optical properties of ZnO thin films. ZnO thin films have been deposited on (100) p-type silicon substrates and (001) sapphire substrates by pulsed laser deposition technique using a Nd:YAG laser with the wavelength of 355 nm. Oxygen and nitrogen gases were used as ambient gases. Substrate temperatures were varied in the range of 200$^{\circ}C$ to 600$^{\circ}C$ at a fixed ambient gas pressure of 350 mTorr. ZnO films have been deposited on various substrates, such as Si and sapphire wafers. We have investigated substrate effect on the optical and structural properties of ZnO thin films using X-ray diffraction (XRD) and photoluminescence (PL).

  • PDF

Synthesis of Aligned ZnO Nanorod Arrays via Hydrothermal Route (수열합성법에 의한 정렬된 ZnO 나노로드 구조의 합성)

  • Koo, Jin Heui;Lee, Byeong Woo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.472-476
    • /
    • 2016
  • The nano-array of the vertically aligned rod-like particles grown on ZnO coated glass-substrates was obtained via hydrothermal process. ZnO thin film coatings were prepared on the glass substrates using a MOD (metallorganic deposition) dip-coating method with zinc chloride dihydrate as starting material and 2-ethylhexanol as solvent. ZnO nanorods were synthesized on the seeded substrates by hydrothermal method at $80^{\circ}C$ using zinc-nitrate hexahydrate as a Zn source and sodium hydroxide as a mineralizer. Under the hydrothermal condition, the rod-like nanocrystals were easily attaching on the already ZnO seeded (coated) glass surface. It has been shown that the hydrothermal synthesis parameters are key factors in the nucleation and growth of ZnO crystallites. By controlling of hydrothermal parameters, the ZnO particulate morphology could be easily tailored. Rod-shaped ZnO arrays on the glass substrates consisted of elongated crystals having 6-fold symmetry were predominantly developed at high Zn precursor concentration in the pH range 7~11.

Structural and Optical Characteristics of High Quality ZnO Thin Films Grown on Glass Substrates Using an Ultrathin Graphite Layer

  • Park, Suk In;Heo, Jaehyuk;Baek, Hyeonjun;Jo, Janghyun;Chung, Kunook;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.302.1-302.1
    • /
    • 2014
  • We report the growth of high quality zinc oxide (ZnO) thin films on amorphous glass substrates and their structural and optical characteristics. For the growth of ZnO films, mechanically exfoliated ultrathin graphite or graphene layers were used as an intermediate layer because ZnO does not have any heteroepitaxial relationship with the amorphous substrates, which significantly improved the crystallinity of the ZnO films. Structural and optical characteristics of the films were investigated using scanning and transmission electron microscopy, x-ray diffraction, and variable temperature photoluminescence spectroscopy. High crystallinity and excellent optical characteristics such as stimulated emission were exhibited from the high quality ZnO films grown on glass substrates.

  • PDF

Substrate effects of ZnO films deposited by rf magnetron sputtering (고주파 마그네트론 스펏터링법으로 제조한 ZnO박막의 기판에 따른 효과)

  • Kim, Y.J.;Kwon, O.J.;Yu, S.D.;Kim, K.W.
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.68-73
    • /
    • 1996
  • ZnO thin films were prepared on glass and (012) sapphire substrates by rf magnetron sputtering. Polycrysralline ZnO films with a (002) orientation were obtained on glass substrates. (110) ZnO films were epitaxially grown on the (012) sapphire substrates. Surface acoustic wave properties were also measured for propagating along the c axis of ZnO film on the glass and sapphire substrates. The phase velocities ($V_{p}$) on glass and sapphire substrate at center frequency were 2680 m/sec and 5980 m/sec and the effective coupling coefficient ($k^{2}$) on the 0th mode were 0.98 % and 1.43 %, respectively.

  • PDF

Morphology Control of ZnO Nanorods on ITO Substrates in Solution Processes (습식공정 기반 ITO 기판 위 산화아연 나노로드 모폴로지 제어)

  • Shin, Kyung-Sik;Lee, Sam-Dong;Jeong, Soon-Wook;Lee, Sang-Woo;Kim, Sang-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.987-991
    • /
    • 2009
  • We report growth of vertically well-aligned zinc oxide (ZnO) nanorods on indium-tin oxide (ITO)/glass substrates using a simple aqueous solution method at low temperature via control of the ZnO seed layer morphology. ZnO nanoparticles acting as seeds are pre-coated on ITO-coated glass substrates. by spin coating to control distribution and density of the ZnO seed nanoparticles. ZnO nanorods were synthesized on the seed-coated substrates in a dipping process into a main growth solution. It was found that the alignment of ZnO nanorods can be effectively manipulated by the spin-coating speed of the seed layer. A grazing incidence X-ray diffraction pattern shows that the ZnO seed layer prepared using the higher spin-coating speed is of uniform seed distribution and a flat surface, resulting in the vertical growth of ZnO nanorods aligned toward the [0001] direction in the main growth process.

Metalorganic chemical vapor deposition of semiconducting ZnO thin films and nanostructures

  • Kim Sang-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.12-19
    • /
    • 2006
  • Metalorganic chemical vapor deposition (MOCYD) techniques have been applied to fabricate semiconducting ZnO thin films and nanostructures, which are promising for novel optoelectronic device applications using their unique multifunctional properties. The growth and characterization of ZnO thin films on Si and $SiO_2$ substrates by MOCYD as fundamental study to realize ZnO nanostructures was carried out. The precise control of initial nucleation processes was found to be a key issue for realizing high quality epitaxial layers on the substrates. In addition, fabrication and characterization of ZnO nanodots with low-dimensional characteristics have been investigated to establish nanostructure blocks for ZnO-based nanoscale device application. Systematic realization of self- and artificially-controlled ZnO nanodots on $SiO_2/Si$ substrates was proposed and successfully demonstrated utilizing MOCYD in addition with a focused ion beam technique.

Mechanical Characteristics of ZnO Thin Films on Si Substrates by Nano Indentation Technology (나노인덴테이션기법을 이용한 ZnO/Si 박막의 기계적 특성)

  • Yoon, Han-Ki;Jung, Hun-Chae;Sohn, Jong-Yoon;Yu, Yun-Sik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.138-143
    • /
    • 2004
  • Recently there has been a great world-wide interest in developing and characterizing new nano-structured materials. These newly developed materials are often prepared in limited quantities and shapes unsuitable for the extensive mechanical testing. The development of depth sensing indentation methods have introduced the advantage of load and depth measurement during the indentation cycle. In the present work, ZnO thin films are prepared on Si(111), Si(100) substrates at different temperatures by pulsed laser deposition(PLD) method. Because the potential energy in c-axis is low, the films always show c-axis orientation at the optimized conditions in spite of the different substrates. Thin films are investigated by X-ray diffractometer and Nano indentation equipment. From these measurements it is possible to get elastic modulus and hardness of ZnO thin films on Si substrates.

  • PDF

The growth of ZnO nanorods by hydrothermal method on organic substrates (유기 기판 위에 수열 합성법으로 성장된 ZnO 나노 막대의 특성 연구)

  • Kim, Ah-Ra;Lee, Ji-Yeon;Lee, Ju-Young;Kim, Hong-Seung;Park, Hyun-Kook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.281-281
    • /
    • 2010
  • In this study, ZnO nanorod arrays are grown on organic substrates by hydrothermal method which requires a low temperature, simple process, and no vacuum. The structure properties of ZnO nanorods were examined by field emission scanning electron microscopy and X-ray diffraction. To detect the optical transmission, ultraviolet visible spectrophotometer was also used. From results, the ZnO nanorods were grown the horizontal growth on the organic substrates had the length of over $10\;{\mu}m$. After deposition of ZnO seed layer, the ZnO nanorod arrays had uniformity orientation and length.

  • PDF

Graphite상의 ZnO Nanorod성장과 그를 이용한 Schottky Diode 제작

  • Nam, Gwang-Hui;Baek, Seong-Ho;Park, Il-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.421.2-421.2
    • /
    • 2014
  • We report on the growth of ZnO nanorods (NRs) grown on graphite and silicon substrates via an all-solution process and characteristics of their heterojunctions. Structural investigations indicated that morphological and crystalline properties were not significantly different for the ZnO NRs on both substrates. However, optical properties from photoluminescence spectra showed that the ZnO NRs on graphite substrate contained more point defects than that on Si substrate. The ZnO NRs on both substrates showed typical rectification properties exhibiting successful diode formation. The heterojunction between the ZnO NRs and the graphite substrate showed a Schottky diode characteristic and photoresponse under ultraviolet illumination at a small reverse bias of -0.1 V. The results showed that the graphite substrate could be a good candidate for a Schottky contact electrode as well as a conducting substrate for electronic and optoelectronic applications of ZnO NRs.

  • PDF