Fig. 1. The alteration of IHOK by change of culture conditions (A) Control IHOK-KGM cells were cultured in two media. a, Control IHOK-KGM cells, b, IHOK-KGM cells were cultured in EF media for 90days, c, IHOK-EF cultured for 90days were re-cultured in KGM for 120 days. (B) The cell growth rate of control IHOK-KGM and two altered cell lines was analyzed.
Fig. 2. The Analysis of Restoration from IHOK-EF to IHOK-KGM (A) RT-PCR was analized by EMT(E-cadherin, vimentin, snail), differentiation(involucrin,) and cell cycle regulation(cyclin D1) markers. (B) Cells were stained by vimentin and cytokeratin antibodies during 2 hr, respectively, for analyss of Immunofluoresence
Fig. 3. Hierarchical clustering for more than doubled changed genes in Microarray data Three kinds of IHOKs cultured by two media were analyzed by microarray. Expressed genes were identified by comparisons of KGM cells to EF cells as well as KGM cells to EFKGM cells. In the data, red groups show upregulated genes and green groups show downregulated genes in comparison with KGM contol groups. Data show at least more than doubled difference among P value<0.05.
Fig. 5. Validation of micoarray data for differentiation inhibitors by real time PCR mRNA expression of ID2, IL6, and TWIST1 was verified by real time PCR in the three cell lines.
Fig. 4. Hierarchical clustering of more than doubled changed genes for cell differentiation Up-regulated or down-regulated genes, which expressed the highest intensity among returned genes more than doubled from genes changed more than doubled between IHOK-KGM control cells and IHOK-EF cells for cell differentiation, were shown.
Table 1. List of genes which inhibit epithelial differentiation in comparison for IHOK-KGM cells to IHOK-EF-cells and IHOK-KGM cells to IHOK-EFKGM cells among changed genes more than 3 fold.
References
- Y. L. Dorland & S. Huveneers. (2017). Cell-Cell junctional mechanotransduction in endothelial remodeling. Cell Mol Life Sci 74(2), 279-292. DOI: 10.1007/s00018-016-2325-8
- M. Arocena et al. (2019). Using a variant of coverslip hypoxia to visualize tumor cell alterations at increasing distances from an oxygen source. J Cell Physiol, 1-8. DOI: 10.1002/jcp.28507
- T. L. Lee. (2018). The Convergence effect of medical industry through stem cell implant treatment. Journal of Convergence for Information Technology, 8(2), 61-65. DOI: 10.22156/CS4SMB.2018.8.2.061
- Y. F. Wang et al. (2017). G9a regulates breast cancer growth by modulating iron homeostasis through the repression of ferroxidase hephaestin. Nat Commun 8(1), 274. DOI: 10.1038/s41467-017-00350-9
- H. K. Oh, E. Y. Do, H.R. Park. (2015). Convergence Studies of NO homeostasis in Cellualar Signalling. Journal of Digital Convergence, 13(12), 461-467. DOI : 10.14400/JDC.2015.13.12.461
- F. S. Varn, Y. Wang, D. W. Mullins, S. Fiering, C. Cheng. (2017). Systematic Pan-Cancer Analysis Reveals Immune Cell Interactions in the Tumor Microenvironment. Cancer Res, 77(6), 1271-1282. DOI: 10.1158/0008-5472.CAN-16-2490
- M. J. Oudin & V. M. Weaver. (2016). Physical and Chemical Gradients in the Tumor Microenvironment Regulate Tumor Cell Invasion, Migration, and Metastasis. Cold Spring Harb Symp Quant Biol, 81, 189-205. DOI: 10.1101/sqb.2016.81.030817
- S. Chandrasekaran, U. B. Giang, M. R. King & L. A. DeLouise. (2011). Microenvironment induced spheroid to sheeting transition of immortalized human keratinocytes (HaCaT) cultured in microbubbles formed in polydimethylsiloxane. Biomaterials, 32, 7159-7168. DOI: 10.1016/j.biomaterials.2011.06.013
- X. Luo, M. K. Ruhland, E. Pazolli, A. C. Lind & S. A. Stewart. (2011). Osteopontin stimulates preneoplastic cellular proliferation through activation of the MAPK pathway. Mol Cancer Res, 9, 1018-1029. DOI: 10.1158/1541-7786.MCR-10-0472
- J. G. Rheinwald & Green H. (1975). Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell, 6, 331-343. https://doi.org/10.1016/S0092-8674(75)80001-8
- R. Takagi, M. Yamato, D. Murakami, H. Sugiyama & T. Okano. (2011). Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes. Biochem Biophys Res Commun, 412, 226-231. DOI: 10.1016/j.bbrc.2011.07.069
- J. J. Li, J. S. Rhim, R. Schlegel, K. H. Vousden & N. H. Colburn. (1998). Expression of dominant negative Jun inhibits elevated AP-1 and NF-kappaB transactivation and suppresses anchorage independent growth of HPV immortalized human keratinocytes. Oncogene, 16, 2711-2721. DOI: 10.1038/sj.onc.1201798
- H. K. Son & J. Kim. (2012). Alteratiojn of epithelial properties by culture condition in HPV16 E6/E7-immortalized human oral keratinocytes. Kor J Oral Maxillofac Pathol, 36(6), 309-316.
- T. Tojima & E. Ito . (2004). Signal transduction cascades underlying de novo protein synthesis required for neuronal morphogenesis in differentiating neurons. Prog Neurobiol, 72, 183-193. DOI: 10.1016/j.pneurobio.2004.03.002
- L. Stephens, L. Milne & P. Hawkins. (2008). Moving towards a better understanding of chemotaxis. Curr Biol, 18, 485-494. DOI: 10.1016/j.cub.2008.04.048
- S. Ohashi1, M. Natsuizaka, S. Naganuma & S. Kagawa. (2011). A NOTCH3-Mediated Squamous Cell Differentiation Program Limits Expansion of EMT-Competent Cells That Express the ZEB Transcription Factors. Cancer Research, 71(21), 6836-47. DOI: 10.1158/0008-5472.CAN-11-0846.
- H. J. Lee et al. (2005). Effects of nicotine on proliferation, cell cycle, and differentiation in immortalized and malignant oral keratinocytes. J Oral Pathol Med, 34, 436-443. DOI: 10.1111/j.1600-0714.2005.00342.x
- R. P. Illeperuma et al. (2011). Immortalized gingival fibroblasts as a cytotoxicity test model for dental materials. J Mater Sci Mater Med., 23(3), 753-62. DOI: 10.1007/s10856-011-4473-6
- J. Sakamoto et al. (1989). Alteration of phenotype, morphology and drug sensitivity in colon cancer cell lines under various culture conditions. Gan to Kagaku Ryoho Cancer Chemotherapy, 16, 1864-1873.
- F. Boraldi, G. Annovi, C. Paolinelli-Devincenzi, R. Tiozzo & D. Quaglino. (2008). The effect of serum withdrawal on the protein profile of quiescent human dermal fibroblasts in primary cell culture. Proteomics, 8, 66-82. DOI: 10.1002/pmic.200700833
- K. Lorenz, T. Rupf, J. Salvette & A. Bader. (2009). Enrichment of human beta 1 bri/alpha 6 bri/CD71 dim keratinocytes after culture in defined media. Cells Tissues Organs, 189, 382-390. DOI: 10.1159/000151291
- X. Han, A. J. Papadopoulos, T. Jones, O. Devaja & Raju KS. (1999). Cholera toxin-induced alteration of the phenotype and behaviour of an ovarian carcinoma cell line, SR8. Immunol Cell Biol, 77, 377-384. DOI: 10.1046/j.1440-1711.1999.00840.x
- N. Morinaga, Y. Kaihou, N. Vitale, J. Moss & M. Noda. (2001). Involvement of ADP-ribosylation factor 1 in cholera toxin-induced morphological changes of Chinese hamster ovary cells. Journal of Biological Chemistry, 276(25), 22838-22843. DOI: 10.1074/jbc.M101184200
- T. J. Shaw, E. J. Keszthelyi, A. M. Tonary, M. Cada, B. C. Vanderhyden. (2002). Cyclic AMP in ovarian cancer cells both inhibits proliferation and increases c-KIT expression. Exp Cell Res, 273(1), 95-106. DOI: 10.1006/excr.2001.5426
- J. Viallet, Y. Sharoni, H. Frucht, R. T. Jensen, J. D. Minna, E. A. Sausville. (1990). Cholera toxin inhibits signal transduction by several mitogens and the in vitro growth of human small-cell lung cancer. J Clin Invest, 86(6), 1904-12. DOI: 10.1172/JCI114923
- Y. Li, W. Yin, X. Wang, W. Zhu, Y. Huang, G. Yan. (2007). Cholera toxin induces malignant glioma cell differentiation via the PKA/CREB pathway. Proc Natl Acad Sci U S A., 104(33), 13438-43. DOI: 10.1073/pnas.0701990104
- Y. U. Kamata, T. Sumida, Y. Kobayashi, A. Ishikawa, W. Kumamaru & Mori Y. (2016). Introduction of ID2 Enhances Invasiveness in ID2-null Oral Squamous Cell Carcinoma Cells via the SNAIL Axis. Cancer Genomics & Proteomics., 13(6), 493-497. https://doi.org/10.21873/cgp.20012
- N, J. Sullivan et al. (2009). Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene, 33, 2940-7. DOI: 10.1038/onc.
- J. Meng et al. (2018). Twist1 Regulates Vimentin through Cul2 Circular RNA to Promote EMT in Hepatocellular Carcinoma. Cancer Research,. 15, 4150-4162. DOI: 10.1158/0008-5472.CAN-17-3009.