DOI QR코드

DOI QR Code

Computation of Passive Earth Pressure Coefficient considering Logarithmic Spiral Arc

대수나선 파괴면을 고려한 수동토압계수의 계산

  • Lee, Seung-Hyun (Division of Architecture, Architectural Engineering, Civil Engineering, Sunmoon University)
  • 이승현 (선문대학교 건축사회환경공학부)
  • Received : 2018.10.11
  • Accepted : 2019.02.01
  • Published : 2019.02.28

Abstract

In this study, a simple method of calculating the passive earth pressure coefficient, which is based on the limit equilibrium method, was proposed and the calculated earth pressure coefficients were compared with those of several researchers. The angle of the linear failure surface, which is combined with the logarithmic spiral arc, to the failure surfaces of the passive zone was derived and the whole passive thrust acting on the Rankine passive zone was considered in the proposed method instead of considering the horizontal component of passive thrust. The variations of the passive earth pressure coefficients of the proposed method showed the same tendency as that of the Coulomb's passive earth pressure coefficients with an inclined angle of backfill and internal friction angle. The magnitude of passive earth pressure coefficients of the proposed method were smaller than those of the Coulomb in almost all cases. A comparison of the passive earth pressure coefficients with the wall friction angle revealed the passive earth pressure coefficients of the proposed method to be smaller than those of the Coulomb and the differences between the two values increased with increasing internal friction angle and wall friction angle. A comparison of the passive earth pressure coefficients of the proposed method with those of the existing researchers for the considered internal friction angles of $25^{\circ}$, $30^{\circ}$, $35^{\circ}$, and $40^{\circ}$ and three wall friction angles revealed the maximum percentage differences for the Kerisel and Absi method, Soubra method, Lancellotta method, $Ant\tilde{a}o$ et al. method, Kame method, and Reddy et al. method to be 4.8%, 3.8%, 31.1%, 4.0%, 20.6%, and 12.8% respectively. The passive earth pressure coefficient and existing pressures were similar in all cases.

본 연구에서는 한계평형법에 근거한 수동토압계수 산정에 있어서의 간단한 방법을 제시하고 그로부터 계산된 수동토압계수를 기존의 연구자들에 의한 값들과 비교해 보았다. 옹벽 배면에서의 파괴면을 구성하는 대수나선과 직선 중에서 직선파괴면의 경사각을 유도하여 수동토압계수 산정방법에 반영하였다. 그리고 수동토압계수 산정시 Rankine 수동영역에 작용하는 토압력의 분력을 고려하기 보다는 전체를 고려하였다. 본 연구를 통해 제안된 방법을 통해 구한 수동토압계수는 Coulomb 수동토압계수와 같이 뒤채움 흙의 지표면의 경사각이 증가할수록 커지고 벽체의 경사각이 감소할수록 작아지는 경향을 보였다. 또한 본 연구를 통해 얻은 수동토압계수는 비교를 위해 고려한 거의 모든 경우에 있어 Coulomb 수동토압계수 보다 작게 계산되었다. 벽마찰각의 변화에 따른 수동토압계수를 비교해 보면 제안된 방법을 통해 계산된 수동토압계수가 Coulomb 수동토압계수 보다 작게 계산되었는데 흙의 내부마찰각이 클수록, 벽마찰각이 증가할수록 그 차이는 컸다. 본 연구에서 고려한 5개의 내부마찰각 중에서 일반적인 사질토의 내부마찰각의 범주에 해당되는 $25^{\circ}$, $30^{\circ}$, $35^{\circ}$ 그리고 $40^{\circ}$와 3개의 벽마찰각에 대하여, 본 연구를 통해 얻은 수동토압계수와 기존의 연구자들에 의한 수동토압계수를 비교해보면 Kerisel and Absi 방법, Soubra 방법, Lancellotta 방법, $Ant\tilde{a}o$ 등에 의한 방법, Kame 방법 그리고 Reddy 등에 의한 방법에 대한 최대 차이율은 각각 4.8%, 3.8%, 31.1%, 4.0%, 20.6% 그리고 12.8% 였는데 전체적으로 볼 때 기존의 연구자들에 의한 값들과 큰 차이를 보이지는 않았다.

Keywords

SHGSCZ_2019_v20n2_425_f0001.png 이미지

Fig. 1. Properties of logarithmic spiral arc

SHGSCZ_2019_v20n2_425_f0002.png 이미지

Fig. 2. Passive failure surface

SHGSCZ_2019_v20n2_425_f0003.png 이미지

Fig. 3. Rankine earth pressure for the case of inclined backfill surface

SHGSCZ_2019_v20n2_425_f0004.png 이미지

Fig. 4. Passive state for the case of inclined backfill surface

SHGSCZ_2019_v20n2_425_f0005.png 이미지

Fig. 5. Stability of soil mass ABCC'

SHGSCZ_2019_v20n2_425_f0006.png 이미지

Fig. 6. Determination of lp1

SHGSCZ_2019_v20n2_425_f0007.png 이미지

Fig. 7. Comparison of coefficients of passive earth pressure

Table 1. Comparison of Kp ( α = 90° )

SHGSCZ_2019_v20n2_425_t0001.png 이미지

Table 2. Comparison of Kp ( i = 0° )

SHGSCZ_2019_v20n2_425_t0002.png 이미지

Table 3. Comparison of Kp (i = 0°, α = 90° )

SHGSCZ_2019_v20n2_425_t0003.png 이미지

Table 4. Comparison of Kp(P) with the other theoretical results (i = 0°, α = 90° )

SHGSCZ_2019_v20n2_425_t0004.png 이미지

References

  1. I. Smith, Smith's elements of soil mechanics, 8th ed., Blackwell Publishing, pp. 250-251, 2006.
  2. K. Terzaghi, Theoretical soil mechanics, John Wiley, London and New York, 1943.
  3. A. Caquot and J. Kerisel, Tables for the calculation of earth pressure, active pressure and bearing capacity of foundations, Gauthier-Villard, Paris, 1948.
  4. T. S. Wu, Soil Mechanics, Allyn and Bacon, Inc., pp. 232-235, 1976.
  5. W. A. Hijab, "A note on the centroid of a logarithmic spiral sector", Geotechnique, Vol. 6, Issue 2, pp. 96-99, 1956. DOI: https://doi.org/10.1680/geot.1956.6.2.66
  6. A. Patki Mrunal, N. M. Jnanendra and M. D. Moreshwar, "Computation of passive earth pressure coefficients for a vertical retaining wall with inclined cohesionless backfill", International Journal of Geo-Engineering, Vol. 6, no. 4, 2015. DOI: https://doi.org/10.1186/s40703-015-0004-5
  7. K. Terzaghi and R. Peck, Soil Mechanics in Engineering Practice. 2nd Edition, John Wiley, pp. 212-217, 1967.
  8. D. H. Shields and A. Z. Tolunay, "Passive pressure coefficients by method of slices", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 99, no. SM12, pp. 1043-1053, 1973. https://doi.org/10.1061/JSFEAQ.0001968
  9. M. Budhu, Soil mechanics and foundations, 2nd ed., John Wiley & Sons, Inc., pp. 502-503, 2007.
  10. AbdelAziz Ahmed Ali senoon, "Passive earth pressure against retaining wall using log-spiral arc", Journal of Engineering Sciences, Assiut University, Vol. 41, no. 1, 2013.
  11. J. Kerisel and E. Absi, Active and passive earth pressure tables, Rotterdam, The Netherlands: Balkema, 1990.
  12. A. H. Soubra, R. Kastner and A. Benmansour, "Passive earth pressures in the presence of hydraulic gradients", Geotechnique, Vol. 49, no. 3, pp. 319-330, 1999. DOI: https://doi.org/10.1680/geot.1999.49.3.319
  13. R. Lancellotta, "Analytical solution of passive earth pressure", Geotechnique, Vol. 52, no. 8, pp. 617-619, 2002. DOI: https://doi.org/10.1680/geot.2002.52.8.617
  14. A. N. Antao, T. G. Santana, M. V. da Silva, N. M. da Costa Guerra, "Passive earth pressure coefficients by upper-bound numerical limit analysis", Canadian Geotechnical Journal, Vol.48, No.5, pp.767-780, 2011. DOI: https://doi.org/10.1139/t10-103
  15. G. S. Kame, "Analysis of a continuous vertical plate anchor embedded in cohesionless soil", PhD Dissertation, Bombay, India, Indian Institute of Technology, 2012.
  16. N. Reddy, D. Dewaikar and G. Mohapatra, "Computation of passive earth pressure coefficients for a horizontal cohesionless backfill using the method of slices", International Journal of Advanced Civil Engineering and Architecture Research, Vol. 2, no. 1, pp. 32-41, 2013. DOI: http://dx.doi.org/10.1179/1939787913Y.0000000037