DOI QR코드

DOI QR Code

Analysis on Determinants of Acceptance Intention of New Agricultural Technology: Using Innovation Resistance Model

농업 신기술 도입의향에 대한 결정요인 분석: 혁신저항모델을 이용하여

  • Kim, Woong (Jellabuk-do Agricultural Research and Extension Services) ;
  • Kim, Hong-Ki (Jellabuk-do Agricultural Research and Extension Services) ;
  • Yu, Young-Seok (Jellabuk-do Agricultural Research and Extension Services) ;
  • Noh, Jaejong (Jellabuk-do Agricultural Research and Extension Services) ;
  • Chae, Yong-Woo (Farm and Agribusiness Management Dvision, Rural Development Administration) ;
  • Choi, Jong-San (Department of Food Marketing, Chonbuk National University)
  • 김웅 (전라북도농업기술원 자원경영과) ;
  • 김홍기 (전라북도농업기술원 자원경영과) ;
  • 유영석 (전라북도농업기술원 자원경영과) ;
  • 노재종 (전라북도농업기술원 자원경영과) ;
  • 채용우 (농촌진흥청) ;
  • 최종산 (전북대학교 식품유통학전공)
  • Received : 2018.08.14
  • Accepted : 2019.02.01
  • Published : 2019.02.28

Abstract

This study was conducted to expand the distribution of new technology efficiently by analyzing the structure relationship based on the innovation resistance model and partial least square structural equation model (PLS-SEM). This study selected innovative propensity, relative advantage, compatibility, complexity, trialability, risk, and extension service consisting of educational, technical, and funding services as factors affecting innovation resistance. This study constructed a questionnaire that measured 11 factors including acceptance intention of new technology using 33 indicators. Data was from April to October, 2017, targeting 180 farmers who did not join in projects to spread new technologies of the Rural Development Administration. Results showed the factors positively and significantly affecting innovation resistance include complexity and risk. Innovative propensity did not have any effect on innovation resistance. However, it positively affected acceptance intention of new technology. The service of the extension organizations had a negative effect on innovation resistance, but did not affect acceptance intention of new technology. This study suggests that extension services should promote activities such as education, consulting, publicity and pilot projects related with new technologies in order to minimize the antipathy toward new agricultural technologies.

본 연구는 농업 신기술의 효율적 확산을 위해 혁신저항이론과 부분회귀-구조방정식모형을 통해 신기술 도입의향의 구조관계를 분석하였다. 혁신저항에 영향을 미치는 요인으로 상대적 이점, 기술 적합성, 기술 복잡성, 시험 가능성, 위험성을 선정하였고, 혁신적 개인성향과 교육, 기술, 자금지원으로 구성된 농촌지도기관의 서비스를 영향요인으로 추가하였다. 본 연구는 33개 문항으로 신기술 도입의향을 포함하여 11개 요인을 측정하는 설문지를 구성하였다. 자료수집은 농촌진흥청에서 개발한 신기술을 보급하기 위하여 시행된 시범사업에 참여하지 않은 180농가를 대상으로 2017년 4월부터 10월까지 이루어졌다. 연구결과, 혁신저항에 양(+)의 영향을 미치는 요인은 기술 복잡성과 위험성으로 나타났다. 혁신적 개인성향은 혁신저항에 유의미한 영향을 미치지 않았지만, 신기술 도입의향에 양(+)의 영향을 미쳤다. 농촌지도기관의 서비스는 혁신저항에 음(-)의 유의미한 영향을 미쳤으나, 신기술 도입의향에는 영향을 미치지 않았다. 본 연구는 농업 신기술에 대한 반감을 최소화하기 위해 농촌지도기관은 신기술과 관련된 교육, 컨설팅, 홍보 및 시범사업과 같은 활동에 노력할 것을 제안했다.

Keywords

SHGSCZ_2019_v20n2_190_f0001.png 이미지

Fig. 1. Research Model.

Table 1. Latent Variable and Indicator

SHGSCZ_2019_v20n2_190_t0001.png 이미지

Table 2. Research hypothesis

SHGSCZ_2019_v20n2_190_t0002.png 이미지

Table 3. Criteria of Assessment

SHGSCZ_2019_v20n2_190_t0003.png 이미지

Table 4. General Information of Farmers

SHGSCZ_2019_v20n2_190_t0004.png 이미지

Table 5. Outer Model Assessment

SHGSCZ_2019_v20n2_190_t0005.png 이미지

Table 6. Assessment of Discriminant Validity by Fornell-Larcker criteria

SHGSCZ_2019_v20n2_190_t0006.png 이미지

Table 7. Collinearity of Exogenous variables

SHGSCZ_2019_v20n2_190_t0007.png 이미지

Table 8. Assessment of Path Analysis

SHGSCZ_2019_v20n2_190_t0008.png 이미지

References

  1. F. Sultan, L. Chan, "The Adoption of New Technology: The Case of Object-Oriented Computing in Software Companies", IEEE Transaction on Engineering Management, Vol.47, No.1 pp. 106-126, 2000. DOI: http://dx.doi.org/10.1109/17.820730
  2. O. S. Kwon, H. J. Kang, "Articles : Estimating the Substitutability of Organic Fertilizers for Chemical Fertilizers ; A Dual Nonparametric Approach", Korean Agricultural Economics Association, Vol.40, No.2 pp. 105-125, August, 1999
  3. G. C. Song, B. W. Yang, K. S. Hwang, H. G. Jung, "Effect on Increase of Productivity and Technology Acceptability in Swine Farming", Korean Journal of Agricultural Management and Policy, Vol.29, No.3 pp. 492-505, September, 2002
  4. S. Y. Park, J. S. Park, "Management Efficiency of Rice Farm based on Wet-Direct Seeding Using DEA", Korean Journal of Agricultural Management and Policy, Vol.40, No.1 pp. 148-173, March, 2013
  5. T. G. Jeong, K. W. Park, S. T. Hong, S. C. Im, "Adoption and Evaluation of Agricultural Technology in Farm Enterprise", association research project final report (e-report)Chungcheongbuk-do Agricultural Research and Extension Service, Rural Development Administration, 2014
  6. W. S. Park, D. K. Seo, S. Y. Lee, "An Empirical Study on the Determinant Factors of New Technology Acceptance by Farmhouse Type", Korean Journal of Agricultural Management and Policy, Vol.36, No.3 pp509-539, September, 2009
  7. G. H. Jung, Y. C. Choe, H. D. Park, I. H. Jang, "Study on the Relationship Between Factors of Farmers' Adoption and Continuous Use of Innovative Technology", Journal of Agricultural Education and Human Resource Development, Vol.42, No.3 pp. 109-137, 2010 https://doi.org/10.23840/agehrd.2010.42.3.109
  8. W. Kim, K. K. Lee, Y. S. Yu, D. W. Choi, "An Analysis Acceptance Factors for the Early Diffusion of Mulberry Protected Cultivation", Journal of Agricultural Extension & Community Development, Vol.21, No.2 pp. 29-56, June, 2014 DOI: http://dx.doi.org/10.12653/jecd.2014.21.2.0029
  9. Y. G. Kim, S. J. Hong, "ARTICLES : Economics ; Study on the Acceptance and Continuous Use of New Seed of Chinese Cabbage", Journal of Agricultural & Life Science, Vol.46, No.4 pp.151-163, October, 2012
  10. J. H. Park, Y. W. Chae, J. S. Park, "A Study on Farm' Acceptance Intentions of New Seed Variety Using Technology Acceptance Model", Korean Food Marketing Association, Vol.33, No.2 pp. 61-80, 2016
  11. J. S. Choi, J. H. Park, J. W. Yoon, Y. W. Chae, "Structural Equation Modeling on Technology Acceptance for New Variet-Case of Forage Crop -", Journal of Agricultural Extension & Community Development, Vol.25, No.1 pp.1-13, March, 2018 DOI: http://dx.doi.org/10.12653/JECD.2018.25.1.0001
  12. D. H. Kim, I. T. Hwanga, S. H. Lee, "The Relationship between Adoption of Innovation and Diffusing Intention for ICT Convergency Industry among Farmers", Journal of Agricultural Extension & Community Development, Vol.22, No.1 pp.43-54, March, 2015 DOI: http://dx.doi.org/10.12653/jecd.2015.22.1.0043
  13. Ram, S. "A Model of Innovation Resistance". Advances in Customer Research, 14. 208-212, 1987
  14. Yeon Jae Ryu, " Consumers' Innovation Resistance Scale Development and Validation", Korean Journal of Consumer and Advertising Psychology, Vol.12, No.1 pp. 191-216, 2011
  15. Sanchez, G., Trinchera, L., & Russolillo, G. plspm: Tools for Partial Least Squares Path Modeling (PLS-PM). R package version 0.4.9. avaliable at https://CRAN.R-project.org/package=plspm. (accessed Aug., 15, 2017
  16. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Avaliable at https://www.R-project.org/. (accessed Aug., 12, 2017
  17. Sanchez, G. PLS path modeling with R. Berkeley: Trowchez Editions. 2013
  18. Hair, J. F., Hult, G. T. M., Ringle. C. M, & Sarstedt, M. A primer on partial least squares structural equation modeling (PLS-SEM). Sage Publications, 2016
  19. Fox, J, & Weisberg, S. An {R} Companion to Applied Regression, Second Edition. Thousand Oaks CA: Sage, 2011