• Title/Summary/Keyword: Pointcloud

Search Result 15, Processing Time 0.026 seconds

Development of Pointcloud Data Integration Technology in Construction Sites via Drone Photogrammetry and MMS LiDAR (드론 및 MMS를 활용한 건설현장 점군 데이터 통합 기술 개발)

  • Jae-Woo Park;Dong-Jun Yeom
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1145-1153
    • /
    • 2023
  • This study presents the development of pointcloud data integration technology in construction sites via drone photogrammetry and MMS LiDAR. The integration of pointcloud data from drones and MMS technology can provide precise and accurate 3D digital maps of construction sites, which can benefit the development of smart construction and BIM. The advantages of using both drones and MMS technology for pointcloud data acquisition in construction sites are discussed, along with the limitations and challenges of using drone photogrammetry and MMS LiDAR for pointcloud data integration. The results of this study can contribute to the advancement of pointcloud data integration technology in construction sites and improve the efficiency and accuracy of construction projects.

A Study on Utilization 3D Shape Pointcloud without GCPs using UAV images (UAV 영상을 이용한 무기준점 3D 형상 점군데이터 활용 연구)

  • Kim, Min-Chul;Yoon, Hyuk-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.97-104
    • /
    • 2018
  • Recently, many studies have examined UAVs (unmanned aerial vehicles), which can replace and supplement existing surveying sensors, systems, and images. This study focused on the use of UAV images and assessed the possibility of utilization in areas where it is difficult to obtain GCPs (ground control points), such as disasters. Therefore, 3D (dimensional) pointcloud data were generated using UAV images and the absolute/relative accuracy of the generated model data using GCPs and without GCPs was assessed. The results showed the 3D shape pointcloud generated by UAV image matching was proven if the relative accuracy was set, regardless of whether GCPs were used or not; the quantitative measurement error rate was within 1%. Even if the absolute accuracy was low, the 3D shape pointcloud that had been post processed quickly was sufficient to be utilized when it is impossible to acquire GCPs or urgent analysis is required. In particular, the results can obtain quantitative measurements and meaningful data, such as the length and area, even in cases with the ground reference point surveying and post-process.

Estimating Volume of Martian Valleys using Adaptive TIN Filtering Algorithm (Adaptive TIN 필터링을 이용한 화성 계곡의 체적 추정)

  • Jung, Jae Hoon;Heo, Joon;Kim, Chang Jae;Luo, Wei
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.3-10
    • /
    • 2012
  • The investigation of valley networks and their volume provide important information about past water activities on Mars. As an alternative of conventional image processing methods, terrain filtering algorithm using pointcloud data is suggested in this study. First, the topography of pointcloud is inverted so that the valleys become positive features and the algorithm is then applied to distinguish the valleys from the surface. Ground DEM and object DEM are generated from both the valleys and the surface pointcloud then the volume of valleys is estimated by multiplying the height difference between the surface with valleys and the area of valleys based on grid cellsize. In the test of valleys adjacent to Tuscaloosa crater, the total volume of valleys was estimated to be $1.41{\times}10^{11}m^3$ with the difference of 12% and 16% compared with the infill volume of Tuscaloosa crater and BTH result respectively.

Moving Object Segmentation-based Approach for Improving Car Heading Angle Estimation (Moving Object Segmentation을 활용한 자동차 이동 방향 추정 성능 개선)

  • Chiyun Noh;Sangwoo Jung;Yujin Kim;Kyongsu Yi;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.130-138
    • /
    • 2024
  • High-precision 3D Object Detection is a crucial component within autonomous driving systems, with far-reaching implications for subsequent tasks like multi-object tracking and path planning. In this paper, we propose a novel approach designed to enhance the performance of 3D Object Detection, especially in heading angle estimation by employing a moving object segmentation technique. Our method starts with extracting point-wise moving labels via a process of moving object segmentation. Subsequently, these labels are integrated into the LiDAR Pointcloud data and integrated data is used as inputs for 3D Object Detection. We conducted an extensive evaluation of our approach using the KITTI-road dataset and achieved notably superior performance, particularly in terms of AOS, a pivotal metric for assessing the precision of 3D Object Detection. Our findings not only underscore the positive impact of our proposed method on the advancement of detection performance in lidar-based 3D Object Detection methods, but also suggest substantial potential in augmenting the overall perception task capabilities of autonomous driving systems.

Skeleton-based 3D Pointcloud Registration Method (스켈레톤 기반의 3D 포인트 클라우드 정합 방법)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.89-90
    • /
    • 2021
  • 본 논문에서는 3D(dimensional) 스켈레톤을 이용하여 멀티 뷰 RGB-D 카메라를 캘리브레이션 하는 새로운 기법을 제안하고자 한다. 멀티 뷰 카메라를 캘리브레이션 하기 위해서는 일관성 있는 특징점이 필요하다. 우리는 다시점 카메라를 캘리브레이션 하기 위한 특징점으로 사람의 스켈레톤을 사용한다. 사람의 스켈레톤은 최신의 자세 추정(pose estimation) 알고리즘들을 이용하여 쉽게 구할 수 있게 되었다. 우리는 자세 추정 알고리즘을 통해서 획득된 3D 스켈레톤의 관절 좌표를 특징점으로 사용하는 RGB-D 기반의 캘리브레이션 알고리즘을 제안한다.

  • PDF

AR-based 3D Digital Map Visualization Support Technology for Field Application of Smart Construction Technology

  • Song, Jinwoo;Hong, Jungtaek;Kwon, Soonwook
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1255-1255
    • /
    • 2022
  • Recently, research on digital twins to generate digital information and manage construction in real-time using advanced technology is being conducted actively. However, in the construction industry, it is difficult to optimize and apply digital technology in real-time due to the nature of the construction industry in which information is constantly fluctuating. In addition, inaccurate information on the topography of construction projects is a major challenge for earthmoving processes. In order to ultimately improve the cost-effectiveness of construction projects, both construction quality and productivity should be addressed through efficient construction information management in large-scale earthworks projects. Therefore, in this study, a 3D digital map-based AR site management work support system for higher efficiency and accuracy of site management was proposed by using unmanned aerial vehicles (UAV) in wide earthworks construction sites to generate point cloud data, building a 3D digital map through acquisition and analysis of on-site sensor-based information, and performing the visualization with AR at the site By utilizing the 3D digital map-based AR site management work support system proposed in this study, information is able to be provided quickly to field managers to enable an intuitive understanding of field conditions and immediate work processing, thereby reducing field management sluggishness and limitations of traditional information exchange systems. It is expected to contribute to the improvement of productivity by overcoming factors that decrease productivity in the construction industry and the improvement of work efficiency at construction sites.

  • PDF

Basic Study of Architectural Design Using low-cost, low-altitute photogrammertric system (저비용 UAV를 이용한 저고도 항공촬영 영상지도 제작방법의 건축설계 활용을 위한 기초연구)

  • Ahn, Kiljae;Kim, Yongsung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.4
    • /
    • pp.789-796
    • /
    • 2015
  • The first phase of architecture design is the field survey of the site and its surroundings. To gather the information there are two methods :the traditional method of an onsite survey, and recently using 3D geometry data and high quality image mapping from online services such as Google Earth. However, the urban condition is fast changing, and information from online services may lack sufficient information. This paper presents the to fast and effective site survey method for urban site using an affordable and fully automated UAV for the architectural design field.

A method of improving the quality of 3D images acquired from RGB-depth camera (깊이 영상 카메라로부터 획득된 3D 영상의 품질 향상 방법)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.637-644
    • /
    • 2021
  • In general, in the fields of computer vision, robotics, and augmented reality, the importance of 3D space and 3D object detection and recognition technology has emerged. In particular, since it is possible to acquire RGB images and depth images in real time through an image sensor using Microsoft Kinect method, many changes have been made to object detection, tracking and recognition studies. In this paper, we propose a method to improve the quality of 3D reconstructed images by processing images acquired through a depth-based (RGB-Depth) camera on a multi-view camera system. In this paper, a method of removing noise outside an object by applying a mask acquired from a color image and a method of applying a combined filtering operation to obtain the difference in depth information between pixels inside the object is proposed. Through each experiment result, it was confirmed that the proposed method can effectively remove noise and improve the quality of 3D reconstructed image.

Usability Evaluation of the Drone LiDAR Data for River Surveying (하천측량을 위한 드론라이다 데이터의 활용성 평가)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.592-597
    • /
    • 2020
  • Currently, river survey data is mainly performed by acquiring longitudinal and cross-sectional data of rivers using total stations or the GNSS(Global Navigation Satellite System). There is not much research that addresses the use of LiDAR(Light Detection and Ranging)systems for surveying rivers. This study evaluates the applicability of using LiDAR data for surveying rivers The Ministry of Land, Infrastructure and Transport recently launched a drone-based river fluctuation survey. Pilot survey projects were conducted in major rivers nationwide. Studies related to river surveying were performed using the ground LiDAR(Light Detection And Ranging)system.Accuracy was ensured by extracting the linearity of the object and comparing it with the total station survey performance. Data on trees and other features were extracted to generate three-dimensional geospatial information for the point-cloud data on the ground.Deviations were 0.008~0.048m. and compared with the results of surveying GNSS and the use of drone LiDAR data. Drone LiDAR provided accurate three-dimensional spatial information on the entire target area. It was able to reduce the shaded area caused by the lack of surveying results of the target area. Analyses such as those of area and slope of the target sites are possible. Uses of drones may therefore be anticipated for terrain analyses in the future.

Comparison of Characteristics of Drone LiDAR for Construction of Geospatial Information in Large-scale Development Project Area (대규모 개발지역의 공간정보 구축을 위한 드론 라이다의 특징 비교)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.768-773
    • /
    • 2020
  • In large-scale land development for the rational use and management of national land resources, the use of geospatial information is essential for the efficient management of projects. Recently, drone LiDAR (Light Detection And Ranging) has attracted attention as an effective geospatial information construction technique for large-scale development areas, such as housing site construction and open-pit mines. Drone LiDAR can be classified into a method using SLAM (Simultaneous Localization And Mapping) technology and a GNSS (Global Navigation Satellite System)/IMU (Inertial Measurement Unit) method. On the other hand, there is a lack of analytical research on the application of drone LiDAR or the characteristics of each method. Therefore, in this study, data acquisition, processing, and analysis using SLAM and GNSS/IMU type drone LiDAR were performed, and the characteristics and utilization of each were evaluated. As a result, the height direction accuracy of drone LiDAR was -0.052~0.044m, which satisfies the allowable accuracy of geospatial information for mapping. In addition, the characteristics of each method were presented through a comparison of data acquisition and processing. Geospatial information constructed through drone LiDAR can be used in several ways, such as measuring the distance, area, and inclination. Based on such information, it is possible to evaluate the safety of large-scale development areas, and this method is expected to be utilized in the future.