• Title/Summary/Keyword: Slope Displacement

Search Result 358, Processing Time 0.029 seconds

The expanded LE Morgenstern-Price method for slope stability analysis based on a force-displacement coupled mode

  • Deng, Dong-ping;Lu, Kuan;Wen, Sha-sha;Li, Liang
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.313-325
    • /
    • 2020
  • Slope displacement and factor of safety (FOS) of a slope are two aspects that reflect the stability of a slope. However, the traditional limit equilibrium (LE) methods only give the result of the slope FOS and cannot be used to solve for the slope displacement. Therefore, developing a LE method to obtain the results of the slope FOS and slope displacement has significance for engineering applications. Based on a force-displacement coupled mode, this work expands the LE Morgenstern-Price (M-P) method. Except for the mechanical equilibrium conditions of a sliding body adopted in the traditional M-P method, the present method introduces a nonlinear model of the shear stress and shear displacement. Moreover, the energy equation satisfied by a sliding body under a small slope displacement is also applied. Therefore, the double solutions of the slope FOS and horizontal slope displacement are established. Furthermore, the flow chart for the expanded LE M-P method is given. By comparisons and analyses of slope examples, the present method has close results with previous research and numerical simulation methods, thus verifying the feasibility of the present method. Thereafter, from the parametric analysis, the following conclusions are obtained: (1) the shear displacement parameters of the soil affect the horizontal slope displacement but have little effect on the slope FOS; and (2) the curves of the horizontal slope displacement vs. the minimum slope FOS could be fitted by a hyperbolic model, which would be beneficial to obtain the horizontal slope displacement for the slope in the critical state.

Correlations between variables related to slope during rainfall and factor of safety and displacement by coupling analysis

  • Jeong-Yeon Yu;Jong-Won Woo;Kyung-Nam Kang;Ki-Il Song
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.77-89
    • /
    • 2023
  • This study aims to establish the correlations between variables related to a slope during rainfall and factor of safety (FOS) and displacement using a coupling analysis method that is designed to consider both in rainfall conditions. With the recent development of measurement technologies, the approach of using the measurement data in the field has become easier. Particularly, they have been obtained in tests to determine the real-time safety and movement of a slope; however, a specific method has not been finalized. In addition, collected measurement data for recognizing the FOS and displacement in real-time with a specific relevance is difficult, and risks of uncertainty, such as in soil parameters and time, exist. In this study, the correlations between various slope-related variables (i.e., rainfall intensity, rainfall duration, angle of the slope, and mechanical properties including strength parameters of selected three types of soil; loamy sand, silt loam, sand) and the FOS and displacement are analyzed in order of seepage analysis, slope stability analysis and slope displacement analysis. Moreover, the methodology of coupling analysis is verified and a fundamental understanding of the factors that need to be considered in real-time observations is gained. The results show that the contributions of the abovementioned variables vary according to the soil type. Thus, the tendency of the displacement also differs by the soil type and variables but not same tendency with FOS. The friction angle and cohesion are negative while the rainfall duration and rainfall intensity are positive with the displacement. This suggests that understanding their correlations is necessary to determine the safety of a slope in real-time using displacement data. Additionally, databases considering rainfall conditions and a wide range of soil characteristics, including hydraulic and mechanical parameters, should be accumulated.

Centrifuge Modeling on the Deformation Modes of Dredged Clay Slope (준설 점토사면의 변형양상에 관한 원심모델링)

  • Ahn, Kwangkuk;Kim, Jeongyeol;Zheng, Zhaodian;Lee, Cheokeun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.2
    • /
    • pp.19-27
    • /
    • 2007
  • In this study, the centrifugal tests were performed with varying the angle of slope such as 1:3, 1:2.5, and 1:2 in order to analyze the deformation and failure type of dredged clay slope for a short term. The displacement mode, displacement vector and the variation of pore pressure with the different slope angle were measured. As a results, even though the displacement in the slope after 4 months were developed in the case of 1:3 for the dredged slope, there are little problems to obtain the stability of dredged slope because the original construction section maintains. Also, in the case of 1:2.5 after 4 months the local slope failure occurred and in the case of 1:2 after 2 months the circle failure starting from the point of the tensile crack occurred. After reviewing the results, the maximum vertical displacement occurred at the crest of slope and maximum horizontal displacement was about double of maximum vertical displacement.

  • PDF

A Study on behavior of Slope Failure Using Field Excavation Experiment (현장 굴착 실험을 통한 사면붕괴 거동 연구)

  • Park, Sung-Yong;Jung, Hee-Don;Kim, Young-Ju;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.101-108
    • /
    • 2017
  • Recently, the occurrence of landslides has been increasing over the years due to the extreme weather event. Developments of landslides monitoring technology that reduce damage caused by landslide are urgently needed. Therefore, in this study, a strain ratio sensor was developed to predict the ground behavior during the slope failure, and the change in surface ground displacement was observed as slope failed on the field model experiment. As a result, in the slope failure, the ground displacement process increases the risk of collapse as the inverse displacement approaches zero. It is closely related to the prediction of precursor. In all cases, increase in displacement and reverse speed of inverse displacement with time was observed during the slope failure, and it is very important event for monitoring collapse phenomenon of risky slopes. In the future, it can be used as disaster prevention technology to contribute in reduction of landslide damage and activation of measurement industry.

Displacement Measuring System for the Slope Stability Analysis Using the Softcopy Photogrammetry (사면안정해석을 위한 사진측량을 이용한 사면변위계측시스템)

  • 한중근;송영석
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.23-32
    • /
    • 2003
  • The displacement measuring systems of slope ground surface are very expensive instruments and have disadvantages concerning installing, maintaining and surveying. The measuring works are very dangerous. Recently, simple systems are required to measure the displacement of slope ground surface in stages of cutting and maintaining slope. In this study, the mechanism of Softcopy Photogrammetry is applied to measure the displacement of slope ground surface. Three dimensional data of the slope ground surface can effectively be obtained in order to analyze slope stability. Computer Program, DIMA (Design IMmage Analysis), including the reformation process of a contour line was developed. As a result of this study, countermeasure and instruction standards of the displacement of slope ground surface before and after slope failure are established. Also, disadvantages of the existing system can be complemented.

Three-dimensional simplified slope stability analysis by hybrid-type penalty method

  • Yamaguchi, Kiyomichi;Takeuchi, Norio;Hamasaki, Eisaku
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.947-955
    • /
    • 2018
  • In this study, we propose a three-dimensional simplified slope stability analysis using a hybrid-type penalty method (HPM). In this method, a solid element obtained by the HPM is applied to a column that divides the slope into a lattice. Therefore, it can obtain a safety factor in the same way as simplified methods on the slip surface. Furthermore, it can obtain results (displacement and strain) that cannot be obtained by conventional limit equilibrium methods such as the Hovland method. The continuity condition of displacement between adjacent columns and between elements for each depth is considered to incorporate a penalty function and the relative displacement. For a slip surface between the bottom surface and the boundary condition to express the slip of slope, we introduce a penalty function based on the Mohr-Coulomb failure criterion. To compute the state of the slip surface, an r-min method is used in the load incremental method. Using the result of the simple three-dimensional slope stability analysis, we obtain a safety factor that is the same as the conventional method. Furthermore, the movement of the slope was calculated quantitatively and qualitatively because the displacement and strain of each element are obtained.

A new analytical model to determine dynamic displacement of foundations adjacent to slope

  • Varzaghani, Mehdi Imani;Ghanbari, Ali
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.561-575
    • /
    • 2014
  • Estimating seismic displacements has a great importance for foundations on or adjacent to slope surfaces. However, dynamic solution of the problem has received little attention by previous researchers. This paper presents a new analytical model to determine seismic displacements of the shallow foundations adjacent to slopes. For this purpose, a dynamic equilibrium equation is written for the foundation with failure wedge. Stiffness and damping at the sliding surface are considered variable and a simple method is proposed for its estimation. Finally, for different failure surfaces, the calculated dynamic displacement and the surfaces with maximum strain are selected as the critical failure surface. Analysis results are presented as curves for different slope angles and different foundation distances from edge of the slope and are then compared with the experimental studies and software results. The comparison shows that the proposed model is capable of estimating seismic displacement of the shallow foundations adjacent to slopes. Also, the results demonstrate that, with increased slope angle and decreased foundation distances from the slope edge, seismic displacement increases in a non-linear trend. With increasing the slope angle and failure wedge angle, maximum strain of failure wedge increases. In addition, effect of slope on foundation settlement could be neglected for the foundation distances over 3B to 5B.

The Deformation Behavior of Anchored Retention Walls installed in Cut Slope (절개사면에 설치된 앵커지지 합벽식 옹벽의 변형거동)

  • Yun, Jung-Mann;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.475-482
    • /
    • 2009
  • The behavior of earth retention wall installed in cut slope is different from the behavior of retention wall applied in urban excavation. In order to establish the design method of anchored retention walls in cut slope, the behavior of anchored retention wall can be investigated and checked in detail. In this study, the behavior of anchored retention wall was investigated by instrumentation installed in cut slope for an apartment construction stabilized by a row of piles. The horizontal displacement of anchored retention wall was larger than the displacement of slope soil behind the wall at the early stage of excavation. As the excavation depth became deeper, the horizontal displacement of slope soil was larger than the displacement of anchored retention wall. It means that the horizontal displacement of anchored retention wall due to excavation is restrained by soldier pile stiffness and jacking force of anchor. Jacking force of anchor was mainly influenced in the horizontal displacement of anchored retention wall. The displacements of anchored retention wall and slope soil were affected mainly by an rainfall infiltrated from the ground surface. Meanwhile, the horizontal displacement of anchored retention wall with slope backside was about 2-6 times larger than the displacement of anchored retention wall with horizontal backside of excavation.

Application of Photogrammetry Method to Measurement of Ground-Surface Displacement on the Slope (사면의 지표변위계측을 위한 사진측량기법의 적용)

  • Han, Jung-Geun;Bae, Sang-Ho;Oh, Da-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.3
    • /
    • pp.10-18
    • /
    • 2001
  • The existing measurement system to ground-surface displacement survey of the slope has been including the hazard for the measure in site and the difficulty for install, maintenance and control of expensive instruments, which are impossible of whole survey on the slope surface. To overcome of those defects, Softcopy Photogrammertry method is used, which can measure displacement of ground-surface on the slope and structure deformation vectors. Recently, the survey methods applying the advantages of Photogrammetry and Digital Photogrammetry Survey are widely used. In this study, therefore, the development and application of the new instrument mechanism on the the site example are studied. Through the application of Softcopy Photogrammetry, the 3-D data of ground surface on the dangerous slope could be effectively obtained at the long distance, which are obtained through the reform process of contour line. Those are different to the results of the Close-Range Photogrammetry analysis. In ground instrumentation parts, the new practical system shall be the technical base to improve of the instrument machine as well as can be widely applied in civil engineering and others branch.

  • PDF

Monitoring analysis of Model Slope by using Terrestrial LiDAR data (지상LiDAR자료를 이용한 모형사면의 모니터링)

  • Kim, Sung-Hak;Choi, Seung-Pil;Yang, In-Tae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.17-23
    • /
    • 2008
  • A model slope was made to work out a way of detecting the sign of the occurrence of landslides and monitoring analysis was conducted to grasp the slope displacement of Terrestrial LiDAR equipment. As a result, the image of slope displacement could be monitored quickly and the accuracy of monitoring analysis was a deviation of 0.007m, 0.006m and 0.006m on average based on the figures prior to displacement after the first, second and third displacements, respectively. As the figures represent a very small deviation, they will be able to be used helpfully in measuring the displacement of actual slope in the future.

  • PDF