Changes in the Volume and Cortical Thickness of the Specific Regions of Cerebellum of Patients with Major Depressive Disorder

주요우울장애 환자에서 소뇌 국소 부위의 부피와 피질 두께의 차이

  • Kang, Ji-Won (Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine) ;
  • Han, Kyu-Man (Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine) ;
  • Won, Eunsoo (Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine) ;
  • Tae, Woo-Suk (Brain Convergence Research Center, Korea University Anam Hospital) ;
  • Ham, Byung-Joo (Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine)
  • 강지원 (고려대학교 안암병원 정신건강의학과) ;
  • 한규만 (고려대학교 안암병원 정신건강의학과) ;
  • 원은수 (고려대학교 안암병원 정신건강의학과) ;
  • 태우석 (고려대학교 안암병원 융합뇌신경연구센터) ;
  • 함병주 (고려대학교 안암병원 정신건강의학과)
  • Received : 2018.04.18
  • Accepted : 2018.06.29
  • Published : 2018.08.31

Abstract

Objectives A growing body of evidence has suggested that morphologic changes in cerebellum may be implicated with pathophysiology of major depressive disorder (MDD). The aim of this study is to investigate a difference in the volume and cortical thickness of the specific region of cerebellum between patients with MDD and healthy controls (HC). Methods A total of 127 patients with MDD and 105 HC participated in this study and underwent T1-weighted structural magnetic resonance imaging. We analyzed volume and cortical thickness of each twelve cerebellum regions divided by left and right and the volume and cortical thickness of the whole cerebellum from T1-weigted image of participants. One-way analysis of covariance was used to investigate the volume and cortical thickness difference of total and specific regions between two groups adjusting for age, gender, medication, and total intracranial cavity volume. Results We found that the patients with MDD had significantly greater volume in the left cerebellum lobule III region [false discovery rate (FDR)-corrected p = 0.034] compared to HC. Also, our findings indicate that cortical thickness of left lobule VIIB (FDR-corrected p = 0.032) and lobule VIIIB (FDR-corrected p = 0.032) are significantly thinner in the patients with MDD compared with the HC. No significant volume and cortical thickness differences were observed in other sub-regions of the cerebellum. The volumes and cortical thickness of whole cerebellum between patients with MDD and HC did not differ significantly. Conclusions We observed the region-specific volume and cortical thickness difference in cerebellum between the patients with MDD and HC. The results of our study implicate that the information about structural alterations in cerebellum with further replicative studies might provide a stepping stone toward a specific marker to diagnose MDD.

Keywords

References

  1. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, et al.; National Comorbidity Survey Replication. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003;289:3095-3105. https://doi.org/10.1001/jama.289.23.3095
  2. Kupfer DJ, Frank E, Phillips ML. Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet 2012;379:1045-1055. https://doi.org/10.1016/S0140-6736(11)60602-8
  3. Moussavi S, Chatterji S, Verdes E, Tandon A, Patel V, Ustun B. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet 2007;370:851-858. https://doi.org/10.1016/S0140-6736(07)61415-9
  4. Zhang WN, Chang SH, Guo LY, Zhang KL, Wang J. The neural correlates of reward-related processing in major depressive disorder: a meta-analysis of functional magnetic resonance imaging studies. J Affect Disord 2013;151:531-539. https://doi.org/10.1016/j.jad.2013.06.039
  5. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Largescale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry 2015;72:603-611. https://doi.org/10.1001/jamapsychiatry.2015.0071
  6. Pizzagalli DA. Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology 2011;36:183-206. https://doi.org/10.1038/npp.2010.166
  7. Bora E, Fornito A, Pantelis C, Yucel M. Gray matter abnormalities in major depressive disorder: a meta-analysis of voxel based morphometry studies. J Affect Disord 2012;138:9-18. https://doi.org/10.1016/j.jad.2011.03.049
  8. Zhao YJ, Du MY, Huang XQ, Lui S, Chen ZQ, Liu J, et al. Brain grey matter abnormalities in medication-free patients with major depressive disorder: a meta-analysis. Psychol Med 2014;44:2927-2937. https://doi.org/10.1017/S0033291714000518
  9. Price JL, Drevets WC. Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci 2012;16:61-71. https://doi.org/10.1016/j.tics.2011.12.011
  10. Heimer L. The Human Brain and Spinal Cord: Functional Neuroanatomy and Dissection Guide. Berlin, Heidelberg: Springer Science & Business Media;2012.
  11. Fine EJ, Ionita CC, Lohr L. The history of the development of the cerebellar examination. Semin Neurol 2002;22:375-384. https://doi.org/10.1055/s-2002-36759
  12. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 2004;16:367-378. https://doi.org/10.1176/jnp.16.3.367
  13. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 2009;44:489-501. https://doi.org/10.1016/j.neuroimage.2008.08.039
  14. Miall RC. Cerebellum: anatomy and function. In: Pfaff D, Volkow N, editors. Neuroscience in the 21st Century. New York, NY: Springer; 2013. p.1149-1167.
  15. Voogd J, Glickstein M. The anatomy of the cerebellum. Trends Cogn Sci 1998;2:307-313. https://doi.org/10.1016/S1364-6613(98)01210-8
  16. Harris GJ, Chabris CF, Clark J, Urban T, Aharon I, Steele S, et al. Brain activation during semantic processing in autism spectrum disorders via functional magnetic resonance imaging. Brain Cogn 2006;61:54-68. https://doi.org/10.1016/j.bandc.2005.12.015
  17. Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain 2000;123:1041-1050. https://doi.org/10.1093/brain/123.5.1041
  18. Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain 2000;123:1051-1061. https://doi.org/10.1093/brain/123.5.1051
  19. Depping MS, Wolf ND, Vasic N, Sambataro F, Hirjak D, Thomann PA, et al. Abnormal cerebellar volume in acute and remitted major depression. Prog Neuropsychopharmacol Biol Psychiatry 2016;71:97-102. https://doi.org/10.1016/j.pnpbp.2016.06.005
  20. Stoodley CJ. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front Syst Neurosci 2014;8:92.
  21. Grieve SM, Korgaonkar MS, Koslow SH, Gordon E, Williams LM. Widespread reductions in gray matter volume in depression. Neuroimage Clin 2013;3:332-339. https://doi.org/10.1016/j.nicl.2013.08.016
  22. Koolschijn PC, van Haren NE, Lensvelt-Mulders GJ, Hulshoff Pol HE, Kahn RS. Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain Mapp 2009;30:3719-3735. https://doi.org/10.1002/hbm.20801
  23. Yucel K, Nazarov A, Taylor VH, Macdonald K, Hall GB, Macqueen GM. Cerebellar vermis volume in major depressive disorder. Brain Struct Funct 2013;218:851-858. https://doi.org/10.1007/s00429-012-0433-2
  24. Phillips ML, Chase HW, Sheline YI, Etkin A, Almeida JR, Deckersbach T, et al. Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: neuroimaging approaches. Am J Psychiatry 2015;172:124-138. https://doi.org/10.1176/appi.ajp.2014.14010076
  25. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry 1960;23:56-62. https://doi.org/10.1136/jnnp.23.1.56
  26. Park MTM, Pipitone J, Baer LH, Winterburn JL, Shah Y, Chavez S, et al. Derivation of high-resolution MRI atlases of the human cerebellum at 3 T and segmentation using multiple automatically generated templates. NeuroImage 2014;95:217-231 https://doi.org/10.1016/j.neuroimage.2014.03.037
  27. Romero JE, Coupe P, Giraud R, Ta VT, Fonov V, Park MTM, et al. CERES: a new cerebellum lobule segmentation method. Neuroimage 2017;147:916-924. https://doi.org/10.1016/j.neuroimage.2016.11.003
  28. Giraud R, Ta VT, Papadakis N, Manjon JV, Collins DL, Coupe P, et al. An Optimized PatchMatch for multi-scale and multi-feature label fusion. Neuroimage 2016;124:770-782. https://doi.org/10.1016/j.neuroimage.2015.07.076
  29. Rousseau F, Habas PA, Studholme C. A supervised patch-based approach for human brain labeling. IEEE Trans Med Imaging 2011;30:1852-1862. https://doi.org/10.1109/TMI.2011.2156806
  30. Chakravarty MM, Steadman P, van Eede MC, Calcott RD, Gu V, Shaw P, et al. Performing label-fusion-based segmentation using multiple automatically generated templates. Hum Brain Mapp 2013;34:2635-2654. https://doi.org/10.1002/hbm.22092
  31. Tae WS, Kim SS, Lee KU, Nam EC, Kim KW. Validation of hippocampal volumes measured using a manual method and two automated methods (FreeSurfer and IBASPM) in chronic major depressive disorder. Neuroradiology 2008;50:569-581. https://doi.org/10.1007/s00234-008-0383-9
  32. Nixon NL, Liddle PF, Nixon E, Worwood G, Liotti M, Palaniyappan L. Biological vulnerability to depression: linked structural and functional brain network findings. Br J Psychiatry 2014;204:283-289. https://doi.org/10.1192/bjp.bp.113.129965
  33. Peng D, Shi F, Li G, Fralick D, Shen T, Qiu M, et al. Surface vulnerability of cerebral cortex to major depressive disorder. PLoS One 2015;10:e0120704. https://doi.org/10.1371/journal.pone.0120704
  34. Han KM, Kim D, Sim Y, Kang J, Kim A, Won E, et al. Alterations in the brainstem volume of patients with major depressive disorder and their relationship with antidepressant treatment. J Affect Disord 2017;208:68-75. https://doi.org/10.1016/j.jad.2016.08.066
  35. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological) 1995;57:289-300.
  36. Arnone D, McIntosh AM, Ebmeier KP, Munafo MR, Anderson IM. Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses. Eur Neuropsychopharmacol 2012;22:1-16. https://doi.org/10.1016/j.euroneuro.2011.05.003
  37. Kempton MJ, Salvador Z, Munafo MR, Geddes JR, Simmons A, Frangou S, et al. Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry 2011;68:675-690. https://doi.org/10.1001/archgenpsychiatry.2011.60
  38. Frodl TS, Koutsouleris N, Bottlender R, Born C, Jager M, Scupin I, et al. Depression-related variation in brain morphology over 3 years: effects of stress? Arch Gen Psychiatry 2008;65:1156-1165. https://doi.org/10.1001/archpsyc.65.10.1156
  39. Pillay SS, Yurgelun-Todd DA, Bonello CM, Lafer B, Fava M, Renshaw PF. A quantitative magnetic resonance imaging study of cerebral and cerebellar gray matter volume in primary unipolar major depression: relationship to treatment response and clinical severity. Biol Psychiatry 1997;42:79-84. https://doi.org/10.1016/S0006-3223(96)00335-6
  40. Peng J, Liu J, Nie B, Li Y, Shan B, Wang G, et al. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: a voxel-based morphometry study. Eur J Radiol 2011;80:395-399. https://doi.org/10.1016/j.ejrad.2010.04.006
  41. Escalona PR, Early B, McDonald WM, Doraiswamy PM, Shah SA, Husain MM, et al. Reduction of cerebellar volume in major depression: a controlled MRI study. Depression 1993;1:156-158. https://doi.org/10.1002/depr.3050010307
  42. Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J. The cerebellum and event timing. Ann N Y Acad Sci 2002;978:302-317. https://doi.org/10.1111/j.1749-6632.2002.tb07576.x
  43. Rubia K, Smith A. The neural correlates of cognitive time management: a review. Acta Neurobiol Exp (Wars) 2004;64:329-340.
  44. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci 2009;29:8586-8594. https://doi.org/10.1523/JNEUROSCI.1868-09.2009
  45. Choi EY, Yeo BT, Buckner RL. The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol 2012;108:2242-2263. https://doi.org/10.1152/jn.00270.2012
  46. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008;1124:1-38. https://doi.org/10.1196/annals.1440.011
  47. Alalade E, Denny K, Potter G, Steffens D, Wang L. Altered cerebellar-cerebral functional connectivity in geriatric depression. PLoS One 2011;6:e20035. https://doi.org/10.1371/journal.pone.0020035
  48. Collin G, Hulshoff Pol HE, Haijma SV, Cahn W, Kahn RS, van den Heuvel MP. Impaired cerebellar functional connectivity in schizophrenia patients and their healthy siblings. Front Psychiatry 2011;2:73.
  49. Drevets WC. Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Progress in Brain Research 2000;126:413-431.
  50. Lee KH, Farrow TF, Parks RW, Newton LD, Mir NU, Egleston PN, et al. Increased cerebellar vermis white-matter volume in men with schizophrenia. J Psychiatr Res 2007;41:645-651. https://doi.org/10.1016/j.jpsychires.2006.03.001
  51. Fatemi SH, Laurence JA, Araghi-Niknam M, Stary JM, Schulz SC, Lee S, et al. Glial fibrillary acidic protein is reduced in cerebellum of subjects with major depression, but not schizophrenia. Schizophr Res 2004;69:317-323. https://doi.org/10.1016/j.schres.2003.08.014
  52. Jarnum H, Eskildsen SF, Steffensen EG, Lundbye-Christensen S, Simonsen CW, Thomsen IS, et al. Longitudinal MRI study of cortical thickness, perfusion, and metabolite levels in major depressive disorder. Acta Psychiatr Scand 2011;124:435-446. https://doi.org/10.1111/j.1600-0447.2011.01766.x
  53. Griffin JL, Bollard M, Nicholson JK, Bhakoo K. Spectral profiles of cultured neuronal and glial cells derived from HRMAS (1) H NMR spectroscopy. NMR Biomed 2002;15:375-384. https://doi.org/10.1002/nbm.792
  54. Anacker C, Zunszain PA, Carvalho LA, Pariante CM. The glucocorticoid receptor: pivot of depression and of antidepressant treatment? Psychoneuroendocrinology 2011;36:415-425. https://doi.org/10.1016/j.psyneuen.2010.03.007
  55. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 2009;65:732-741. https://doi.org/10.1016/j.biopsych.2008.11.029
  56. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage 2012;59:1560-1570. https://doi.org/10.1016/j.neuroimage.2011.08.065
  57. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex 2009;19:2485-2497. https://doi.org/10.1093/cercor/bhp135
  58. Graham J, Salimi-Khorshidi G, Hagan C, Walsh N, Goodyer I, Lennox B, et al. Meta-analytic evidence for neuroimaging models of depression: state or trait? J Affect Disord 2013;151:423-431. https://doi.org/10.1016/j.jad.2013.07.002
  59. Armstrong E, Schleicher A, Omran H, Curtis M, Zilles K. The ontogeny of human gyrification. Cereb Cortex 1995;5:56-63. https://doi.org/10.1093/cercor/5.1.56
  60. Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex 2009;19:2728-2735. https://doi.org/10.1093/cercor/bhp026
  61. Winkler AM, Kochunov P, Fox PT, Duggirala R, Almasy L, Blangero J, et al. Heritability of volume, surface area and thickness for anatomically defined cortical brain regions estimated in a large extended pedigree. NeuroImage 2009;47:S162.
  62. Winkler AM, Kochunov P, Blangero J, Almasy L, Zilles K, Fox PT, et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 2010;53:1135-1146. https://doi.org/10.1016/j.neuroimage.2009.12.028
  63. Kong L, Wu F, Tang Y, Ren L, Kong D, Liu Y, et al. Frontal-subcortical volumetric deficits in single episode, medication-naive depressed patients and the effects of 8 weeks fluoxetine treatment: a VBMDARTEL study. PLoS One 2014;9:e79055. https://doi.org/10.1371/journal.pone.0079055
  64. Smith R, Chen K, Baxter L, Fort C, Lane RD. Antidepressant effects of sertraline associated with volume increases in dorsolateral prefrontal cortex. J Affect Disord 2013;146:414-419. https://doi.org/10.1016/j.jad.2012.07.029
  65. Willard SL, Uberseder B, Clark A, Daunais JB, Johnston WD, Neely D, et al. Long term sertraline effects on neural structures in depressed and nondepressed adult female nonhuman primates. Neuropharmacology 2015;99:369-378. https://doi.org/10.1016/j.neuropharm.2015.06.011