• Title/Summary/Keyword: Cerebellar cortical thickness

Search Result 2, Processing Time 0.018 seconds

Changes in the Volume and Cortical Thickness of the Specific Regions of Cerebellum of Patients with Major Depressive Disorder (주요우울장애 환자에서 소뇌 국소 부위의 부피와 피질 두께의 차이)

  • Kang, Ji-Won;Han, Kyu-Man;Won, Eunsoo;Tae, Woo-Suk;Ham, Byung-Joo
    • Korean Journal of Biological Psychiatry
    • /
    • v.25 no.3
    • /
    • pp.60-71
    • /
    • 2018
  • Objectives A growing body of evidence has suggested that morphologic changes in cerebellum may be implicated with pathophysiology of major depressive disorder (MDD). The aim of this study is to investigate a difference in the volume and cortical thickness of the specific region of cerebellum between patients with MDD and healthy controls (HC). Methods A total of 127 patients with MDD and 105 HC participated in this study and underwent T1-weighted structural magnetic resonance imaging. We analyzed volume and cortical thickness of each twelve cerebellum regions divided by left and right and the volume and cortical thickness of the whole cerebellum from T1-weigted image of participants. One-way analysis of covariance was used to investigate the volume and cortical thickness difference of total and specific regions between two groups adjusting for age, gender, medication, and total intracranial cavity volume. Results We found that the patients with MDD had significantly greater volume in the left cerebellum lobule III region [false discovery rate (FDR)-corrected p = 0.034] compared to HC. Also, our findings indicate that cortical thickness of left lobule VIIB (FDR-corrected p = 0.032) and lobule VIIIB (FDR-corrected p = 0.032) are significantly thinner in the patients with MDD compared with the HC. No significant volume and cortical thickness differences were observed in other sub-regions of the cerebellum. The volumes and cortical thickness of whole cerebellum between patients with MDD and HC did not differ significantly. Conclusions We observed the region-specific volume and cortical thickness difference in cerebellum between the patients with MDD and HC. The results of our study implicate that the information about structural alterations in cerebellum with further replicative studies might provide a stepping stone toward a specific marker to diagnose MDD.

  • PDF

Effect of rTMS on Motor Sequence Learning and Brain Activation : A Preliminary Study (반복적 경두부 자기자극이 운동학습과 뇌 운동영역 활성화에 미치는 영향 : 예비연구)

  • Park, Ji-Won;Kim, Jong-Man;Kim, Yun-Hee
    • Physical Therapy Korea
    • /
    • v.10 no.3
    • /
    • pp.17-27
    • /
    • 2003
  • Repetitive transcranial magnetic stimulation (rTMS) modulates cortical excitability beyond the duration of the rTMS trains themselves. Depending on rTMS parameters, a lasting inhibition or facilitation of cortical excitability can be induced. Therefore, rTMS of high or low frequency over motor cortex may change certain aspects of motor learning performance and cortical activation. This study investigated the effect of high and low frequency subthreshold rTMS applied to the motor cortex on motor learning of sequential finger movements and brain activation using functional MRI (fMRI). Three healthy right-handed subjects (mean age 23.3) were enrolled. All subjects were trained with sequences of seven-digit rapid sequential finger movements, 30 minutes per day for 5 consecutive days using their left hand. 10 Hz (high frequency) and 1 Hz (low frequency) trains of rTMS with 80% of resting motor threshold and sham stimulation were applied for each subject during the period of motor learning. rTMS was delivered on the scalp over the right primary motor cortex using a figure-eight shaped coil and a Rapid(R) stimulator with two Booster Modules (Magstim Co. Ltd, UK). Functional MRI (fMRI) was performed on a 3T ISOL Forte scanner before and after training in all subjects (35 slices per one brain volume TR/TE = 3000/30 ms, Flip angle $60^{\circ}$, FOV 220 mm, $64{\times}64$ matrix, slice thickness 4 mm). Response time (RT) and target scores (TS) of sequential finger movements were monitored during the training period and fMRl scanning. All subjects showed decreased RT and increased TS which reflecting learning effects over the training session. The subject who received high frequency rTMS showed better performance in TS and RT than those of the subjects with low frequency or sham stimulation of rTMS. In fMRI, the subject who received high frequency rTMS showed increased activation of primary motor cortex, premotor, and medial cerebellar areas after the motor sequence learning after the training, but the subject with low frequency rTMS showed decreased activation in above areas. High frequency subthreshold rTMS on the motor cortex may facilitate the excitability of motor cortex and improve the performance of motor sequence learning in normal subject.

  • PDF