DOI QR코드

DOI QR Code

Effects of Anti-inflammation and Skin Barrier by Genistein Cyclodextrin Complex

제니스테인 Cyclodextrin 포접체의 항염 및 피부장벽에 미치는 영향

  • Choi, Dong Jun (School of Cosmetic Science and Beauty Biotechnology, Semyung University) ;
  • Cho, Uk Min (School of Cosmetic Science and Beauty Biotechnology, Semyung University) ;
  • Choi, Da Hee (School of Cosmetic Science and Beauty Biotechnology, Semyung University) ;
  • Hwang, Hyung Seo (School of Cosmetic Science and Beauty Biotechnology, Semyung University)
  • 최동준 (세명대학교 화장품뷰티생명공학부) ;
  • 조욱민 (세명대학교 화장품뷰티생명공학부) ;
  • 최다희 (세명대학교 화장품뷰티생명공학부) ;
  • 황형서 (세명대학교 화장품뷰티생명공학부)
  • Received : 2018.04.30
  • Accepted : 2018.06.07
  • Published : 2018.06.30

Abstract

Genistein is one of the representative isoflavone compounds isolated from soybeans and has been studied very well for its anti-aging and anti-inflammatory activity through previous studies. However, although genistein exhibits high solubility in organic solvents, it shows low bioavaility due to the low water solubility. In this study, we compared directly the functional difference between genistein and genistein cyclodextrin complex which has the improved water solubility and stability by cell based assay. Cell cytotoxicity experiment were carried out on RAW264.7 with CCK-8 assay and cytotoxicity was appeared from $10{\mu}g/mL$, thereby maximum concentration was set to $10{\mu}g/mL$ in all condition. We discovered that genistein CD complex suppressed NO production and iNOS expression as concentration dependent manner in the condition of LPS rather than genistein. Also, we could understand that genistein CD complex was able to down-regulate mRNA expression of anti-inflammatory cytokines such as $IL1-{\alpha}$, $IL1-{\beta}$, IL-6, and $TNF-{\alpha}$ as concentration dependent manner in the presence of LPS. In addition, we verified that genistein CD complex increased TEER of HaCaT human keratinocyte cells as concentration dependent pattern and stimulated cell division and migration rather than genistein in cell migration assay. Thus, it is expected that it can be used as an effective cosmetic raw material for improving atopic dermatitis or skin barrier if clinical studies on skin regeneration and skin barrier of the genistein CD complex are carried out.

제니스테인(genistein)은 대두에서 추출한 대표적인 이소 플라본 화합물 중 하나이며 노화 방지 및 항염증 활성 효과에 대한 연구가 많이 이뤄졌다. 그러나 제니스테인은 유기용매에 높은 용해도를 보일지라도 물에 대한 수용성은 매우 낮아 생체이용률이 떨어진다. 따라서 본 연구에서는 제니스테인의 수용성과 안정성이 크게 향상된 제니스테인 cyclodextrin 포접체(genistein CD complex)를 제니스테인과 직접 비교 분석하고자 하였다. 우선 세포독성 실험을 위해 RAW264.7 대식세포를 대상으로 CCK-8 assay를 시행하였고, 제니스테인 및 제니스테인 cyclodextrin 포접체 모두 $10{\mu}g/mL$ 농도부터 세포독성이 나타나 최대 농도는 $10{\mu}g/mL$로 설정하고 실험을 진행하였다. LPS에 의해 활성화 된 RAW264.7 세포에서 NO(nitric oxide) 생성 및 iNOS mRNA 발현을 관찰한 결과 제니스테인 CD 포접체가 제니스테인 자체 보다 더 효과적으로 억제하였다. 또한 $IL1-{\alpha}$, $IL1-{\beta}$, IL-6 및 $TNF-{\alpha}$와 같은 염증성 사이토카인의 mRNA 발현이 농도 의존적으로 감소됨을 확인하였다. 이 뿐 아니라 인간 각질형성세포인 HaCaT 세포를 이용해 TEER 및 피부장벽 강화 효과를 관찰한 결과 제니스테인 CD 포접체 처리군에서 TEER이 농도 의존적으로 증가되었고, 세포 이동 실험에서도 동일한 결과를 얻을 수 있었다. 따라서 제니스테인 CD 포접체에 대한 피부 재생 및 장벽 강화에 관한 임상 연구등이 수행된다면, 효과적인 아토피 피부염 또는 피부장벽 개선 기능성 화장품 원료로 사용될 수 있을 것으로 기대된다.

Keywords

References

  1. N. R. Perron and L. B. Julia, A review of the antioxidant mechanisms of polyphenol compounds related to iron binding, Cell Biochem. Biophys., 53(2), 75 (2009). https://doi.org/10.1007/s12013-009-9043-x
  2. S. Barnes, The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products, Lymphat. Res. Biol., 8(1), 89 (2010). https://doi.org/10.1089/lrb.2009.0030
  3. V. Mukund, D. Mukund, V. Sharma, M. Mannarapu, and A. Alam, Genistein: Its role in metabolic diseases and cancer, Crit. Rev. Oncol. Hematol., 119, 13 (2017). https://doi.org/10.1016/j.critrevonc.2017.09.004
  4. K. Szkudelska and L. Nogowski, Genistein-a dietary compound inducing hormonal and metabolic changes, J. Steroid Biochem. Mol. Biol., 105, 37 (2007). https://doi.org/10.1016/j.jsbmb.2007.01.005
  5. C. Spagnuolo, G. L. Russo, I. E. Orhan, S. Habtemariam, M. Dagli, A. Sureda, S. F. Nabavi, K. P. Devi, M. R. Loizzo, R. Tundis, and S. M. Nabavi, Genistein and cancer: current status, challenges, and future directions, Adv. Nutr., 6(4), 408 (2015). https://doi.org/10.3945/an.114.008052
  6. M. Hamalinen, R. Nieminen, P. Vuorela, M. Heinonen, and E. Moilanen, Anti-Inflammatory Effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-${\kappa}B$ activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-${\kappa}B$ activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages, Mediators Inflamm., 2007, 45673 (2007).
  7. G. Ji Y. Zhang, Q. Yang, S. Cheng, J. Hao, X. Zhao, and Z. Jiang, Genistein suppresses LPS-Induced inflammatory iesponse through inhibiting NF-${\kappa}B$ following AMP Kinase Activation in RAW 264.7 Macrophages. PLoS. ONE., 7(12), e53101 (2012). https://doi.org/10.1371/journal.pone.0053101
  8. E. Emmerson, L. Campbell, S. G. Ashcroft, and M. J. Hardman, The phytoestrogen genistein promotes wound healing by multiple independent mechanisms, Mol. Cell Endocrinol., 321(2), 184 (2010). https://doi.org/10.1016/j.mce.2010.02.026
  9. F. Casagrande and J. M. Darbon, Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK11, Biochem. Pharmacol., 61(10), 1205 (2001). https://doi.org/10.1016/S0006-2952(01)00583-4
  10. X. Wang and L. Brusseau, Solubilization of some low-polarity organic compounds by hydroxypropyl-beta-cyclodextrin, Environ. Sci. Technol., 27(13), 2821 (1993). https://doi.org/10.1021/es00049a023
  11. R. Challa, A. Ahuja, J. Ali, and R. K. Khar, Cyclodextrins in drug delivery: An updated review, AAPS. Pharm. Sci. Tech., 6(2), E329 (2005). https://doi.org/10.1208/pt060243
  12. M. Kfoury, D. Landy, L. Auezova, H. G. Gerges, and S. Fourmentin, Effect of cyclodextrin complexation on phenylpropanoids' solubility and antioxidant activity, Beilstein. J. Org. Chem.., 10, 2322 (2014). https://doi.org/10.3762/bjoc.10.241
  13. R. O. Williams, V. Mahaguna, and M. Sriwongjanya, Characterization of an inclusion complex of cholesterol and hydroxypropyl-${\beta}$-cyclodextrin, Eur. J. Pharm. Biopharm., 46(3), 355 (1998). https://doi.org/10.1016/S0939-6411(98)00033-2
  14. L. Szente, and J. Szejtli, Highly soluble cyclodextrin derivatives: chemistry, properties and trends in development, Adv. Drug Deliv. Rev., 36(1), 17 (1999). https://doi.org/10.1016/S0169-409X(98)00092-1
  15. V. Crupi, D. Majolino, A. Paciaroni, B. Rossi, R. Stancanelli, V. Venuti, and G. Viliani, The effect of hydrogen bond on the vibrational dynamics of genistein free and complexed with ${\beta}$-cyclodextrins, J. Raman Spectrosc., 41(7), 764 (2010).
  16. J. Tang, N. Xy, H. Ji, H. Liu, Z. Wang, and L. Wu, Eudragit nanoparticles containing genistein: formulation, development, and bioavailability assessment, Int. J. Nanomed., 6, 2429 (2011).
  17. E. M. M. D. Valle, Cyclodextrins and their uses: a review, Process Biochem., 39(9), 1033 (2004). https://doi.org/10.1016/S0032-9592(03)00258-9
  18. A. Rasheed, C. K. A. kumar, and V. V. N. S. S. Sravanthi, Cyclodextrins as durg carrier molecule: a review, Sci. Pharm., 76(4), 567 (2008). https://doi.org/10.3797/scipharm.0808-05
  19. C. L. Wells, R. P. Jechorek, K. M. Kinneberg, S. M. Debol, and S. L. Erlandsen, The isoflavone genistein inhibits internalization of enteric bacteria by cultured caco-2 and HT-29 enterocytes, J. Nutr., 129(3), 634 (1999). https://doi.org/10.1093/jn/129.3.634
  20. M. Amasheh, A. Fromm, S. M. krug, S. Amasheh, S. Andres, M. Zeitz, M. Fromm, and J. D. Schulzke, $TNF{\alpha}$-induced and berberine-antagonized tight junction barrier impairment via tyrosine kinase, Akt and $NF{\kappa}B$ signaling, J. Cell Sci., 123(23), 4145 (2010) https://doi.org/10.1242/jcs.070896
  21. A. E. Daruhazi, L. Szente, B. Balogh, P. Matyus, S. Bani, M. Takacs, A. Gergely, P. Aorvath, E. Pzoke, and E, Lemberkovics, Utility of cyclodextrins in the formulation of genistein part 1. Preparation and physicochemical properties of genistein complexes with native cyclodextrins, J. Pharm. Biomed. Anal., 48(3), 636 (2008). https://doi.org/10.1016/j.jpba.2008.06.007
  22. V. Crupi, D. Majolino, A. Paciaroni, R. Stancanelli, and V. Venuti, Influence of the "Host-Guest" interactions on the mobility of genitein/${\beta}$-cyclodextrin inclusion complex, J. Phys. Chem., 113(31), 11032 (2009). https://doi.org/10.1021/jp810546h
  23. C. R. Xavier, A. P. C. Silva, L. C. Schwingel, G. S. Borghetti, L. S. Koester, P. Mayorga, H. F. Teixeira, V. L. Bassani, I. S. Lula, and R. D. Sinisterra, Improvement of genistein content in solid genistein/${\beta}$-cyclodextrin complexes, Quim. Nova., 33(3), 587 (2010). https://doi.org/10.1590/S0100-40422010000300019
  24. C. T. Danciu, C. Soica, E. Csanyi, R. Ambrus, S. Feflea, C. Peev, and C. Dehelean, Changes in the anti-inflammatory activity of soy isoflavonoid genistein versus genistein incorporated in two types of cyclodextrin derivatives, Chem. Cent. J., 6(1), 58 (2012).
  25. M. Davaatseren, Y. J. Jo, G. P. Hong, H. J. Hur, S. Park, and M. J. Choi, Studies on the anti-oxidative function of trans-cinnamaldehyde-included ${\beta}$-cyclodextrin complex, Molecules, 22(12), 1868 (2017). https://doi.org/10.3390/molecules22121868