Browse > Article
http://dx.doi.org/10.15230/SCSK.2018.44.2.171

Effects of Anti-inflammation and Skin Barrier by Genistein Cyclodextrin Complex  

Choi, Dong Jun (School of Cosmetic Science and Beauty Biotechnology, Semyung University)
Cho, Uk Min (School of Cosmetic Science and Beauty Biotechnology, Semyung University)
Choi, Da Hee (School of Cosmetic Science and Beauty Biotechnology, Semyung University)
Hwang, Hyung Seo (School of Cosmetic Science and Beauty Biotechnology, Semyung University)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.44, no.2, 2018 , pp. 171-181 More about this Journal
Abstract
Genistein is one of the representative isoflavone compounds isolated from soybeans and has been studied very well for its anti-aging and anti-inflammatory activity through previous studies. However, although genistein exhibits high solubility in organic solvents, it shows low bioavaility due to the low water solubility. In this study, we compared directly the functional difference between genistein and genistein cyclodextrin complex which has the improved water solubility and stability by cell based assay. Cell cytotoxicity experiment were carried out on RAW264.7 with CCK-8 assay and cytotoxicity was appeared from $10{\mu}g/mL$, thereby maximum concentration was set to $10{\mu}g/mL$ in all condition. We discovered that genistein CD complex suppressed NO production and iNOS expression as concentration dependent manner in the condition of LPS rather than genistein. Also, we could understand that genistein CD complex was able to down-regulate mRNA expression of anti-inflammatory cytokines such as $IL1-{\alpha}$, $IL1-{\beta}$, IL-6, and $TNF-{\alpha}$ as concentration dependent manner in the presence of LPS. In addition, we verified that genistein CD complex increased TEER of HaCaT human keratinocyte cells as concentration dependent pattern and stimulated cell division and migration rather than genistein in cell migration assay. Thus, it is expected that it can be used as an effective cosmetic raw material for improving atopic dermatitis or skin barrier if clinical studies on skin regeneration and skin barrier of the genistein CD complex are carried out.
Keywords
genistein cyclodextrin complex; isoflavone; anti-inflammatory effects; cell migration; skin barrier;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. Crupi, D. Majolino, A. Paciaroni, R. Stancanelli, and V. Venuti, Influence of the "Host-Guest" interactions on the mobility of genitein/${\beta}$-cyclodextrin inclusion complex, J. Phys. Chem., 113(31), 11032 (2009).   DOI
2 C. R. Xavier, A. P. C. Silva, L. C. Schwingel, G. S. Borghetti, L. S. Koester, P. Mayorga, H. F. Teixeira, V. L. Bassani, I. S. Lula, and R. D. Sinisterra, Improvement of genistein content in solid genistein/${\beta}$-cyclodextrin complexes, Quim. Nova., 33(3), 587 (2010).   DOI
3 C. T. Danciu, C. Soica, E. Csanyi, R. Ambrus, S. Feflea, C. Peev, and C. Dehelean, Changes in the anti-inflammatory activity of soy isoflavonoid genistein versus genistein incorporated in two types of cyclodextrin derivatives, Chem. Cent. J., 6(1), 58 (2012).
4 M. Davaatseren, Y. J. Jo, G. P. Hong, H. J. Hur, S. Park, and M. J. Choi, Studies on the anti-oxidative function of trans-cinnamaldehyde-included ${\beta}$-cyclodextrin complex, Molecules, 22(12), 1868 (2017).   DOI
5 M. Hamalinen, R. Nieminen, P. Vuorela, M. Heinonen, and E. Moilanen, Anti-Inflammatory Effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-${\kappa}B$ activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-${\kappa}B$ activation along with their inhibitory effect on iNOS expression and NO production in activated macrophages, Mediators Inflamm., 2007, 45673 (2007).
6 N. R. Perron and L. B. Julia, A review of the antioxidant mechanisms of polyphenol compounds related to iron binding, Cell Biochem. Biophys., 53(2), 75 (2009).   DOI
7 S. Barnes, The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products, Lymphat. Res. Biol., 8(1), 89 (2010).   DOI
8 V. Mukund, D. Mukund, V. Sharma, M. Mannarapu, and A. Alam, Genistein: Its role in metabolic diseases and cancer, Crit. Rev. Oncol. Hematol., 119, 13 (2017).   DOI
9 K. Szkudelska and L. Nogowski, Genistein-a dietary compound inducing hormonal and metabolic changes, J. Steroid Biochem. Mol. Biol., 105, 37 (2007).   DOI
10 C. Spagnuolo, G. L. Russo, I. E. Orhan, S. Habtemariam, M. Dagli, A. Sureda, S. F. Nabavi, K. P. Devi, M. R. Loizzo, R. Tundis, and S. M. Nabavi, Genistein and cancer: current status, challenges, and future directions, Adv. Nutr., 6(4), 408 (2015).   DOI
11 G. Ji Y. Zhang, Q. Yang, S. Cheng, J. Hao, X. Zhao, and Z. Jiang, Genistein suppresses LPS-Induced inflammatory iesponse through inhibiting NF-${\kappa}B$ following AMP Kinase Activation in RAW 264.7 Macrophages. PLoS. ONE., 7(12), e53101 (2012).   DOI
12 E. Emmerson, L. Campbell, S. G. Ashcroft, and M. J. Hardman, The phytoestrogen genistein promotes wound healing by multiple independent mechanisms, Mol. Cell Endocrinol., 321(2), 184 (2010).   DOI
13 M. Kfoury, D. Landy, L. Auezova, H. G. Gerges, and S. Fourmentin, Effect of cyclodextrin complexation on phenylpropanoids' solubility and antioxidant activity, Beilstein. J. Org. Chem.., 10, 2322 (2014).   DOI
14 F. Casagrande and J. M. Darbon, Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: regulation of cyclin-dependent kinases CDK2 and CDK11, Biochem. Pharmacol., 61(10), 1205 (2001).   DOI
15 X. Wang and L. Brusseau, Solubilization of some low-polarity organic compounds by hydroxypropyl-beta-cyclodextrin, Environ. Sci. Technol., 27(13), 2821 (1993).   DOI
16 R. Challa, A. Ahuja, J. Ali, and R. K. Khar, Cyclodextrins in drug delivery: An updated review, AAPS. Pharm. Sci. Tech., 6(2), E329 (2005).   DOI
17 R. O. Williams, V. Mahaguna, and M. Sriwongjanya, Characterization of an inclusion complex of cholesterol and hydroxypropyl-${\beta}$-cyclodextrin, Eur. J. Pharm. Biopharm., 46(3), 355 (1998).   DOI
18 J. Tang, N. Xy, H. Ji, H. Liu, Z. Wang, and L. Wu, Eudragit nanoparticles containing genistein: formulation, development, and bioavailability assessment, Int. J. Nanomed., 6, 2429 (2011).
19 L. Szente, and J. Szejtli, Highly soluble cyclodextrin derivatives: chemistry, properties and trends in development, Adv. Drug Deliv. Rev., 36(1), 17 (1999).   DOI
20 V. Crupi, D. Majolino, A. Paciaroni, B. Rossi, R. Stancanelli, V. Venuti, and G. Viliani, The effect of hydrogen bond on the vibrational dynamics of genistein free and complexed with ${\beta}$-cyclodextrins, J. Raman Spectrosc., 41(7), 764 (2010).
21 M. Amasheh, A. Fromm, S. M. krug, S. Amasheh, S. Andres, M. Zeitz, M. Fromm, and J. D. Schulzke, $TNF{\alpha}$-induced and berberine-antagonized tight junction barrier impairment via tyrosine kinase, Akt and $NF{\kappa}B$ signaling, J. Cell Sci., 123(23), 4145 (2010)   DOI
22 E. M. M. D. Valle, Cyclodextrins and their uses: a review, Process Biochem., 39(9), 1033 (2004).   DOI
23 A. Rasheed, C. K. A. kumar, and V. V. N. S. S. Sravanthi, Cyclodextrins as durg carrier molecule: a review, Sci. Pharm., 76(4), 567 (2008).   DOI
24 C. L. Wells, R. P. Jechorek, K. M. Kinneberg, S. M. Debol, and S. L. Erlandsen, The isoflavone genistein inhibits internalization of enteric bacteria by cultured caco-2 and HT-29 enterocytes, J. Nutr., 129(3), 634 (1999).   DOI
25 A. E. Daruhazi, L. Szente, B. Balogh, P. Matyus, S. Bani, M. Takacs, A. Gergely, P. Aorvath, E. Pzoke, and E, Lemberkovics, Utility of cyclodextrins in the formulation of genistein part 1. Preparation and physicochemical properties of genistein complexes with native cyclodextrins, J. Pharm. Biomed. Anal., 48(3), 636 (2008).   DOI