DOI QR코드

DOI QR Code

The Blocking Effect of Sunscreen Materials on Blue Light

자외선 차단제의 블루라이트 차단효과에 관한 연구

  • 정상욱 ((주)케이씨피부임상연구센터) ;
  • 이시은 ((주)케이씨피부임상연구센터) ;
  • 최선영 (인제대학교 서울백병원) ;
  • 문권기 ((주)웨이나코리아) ;
  • 임소라 ((주)웨이나코리아) ;
  • 김해경 ((주)결고은사람들) ;
  • 박종호 ((주)케이씨피부임상연구센터)
  • Received : 2018.05.24
  • Accepted : 2018.06.26
  • Published : 2018.06.30

Abstract

Blue light is the highest energy wavelengths in the visible light region and induces skin aging and active oxygen. Studies on harmful mechanism of skin are under way. Research on blue light blocking materials in cosmetics and formulation studies are in the early stage, and the test methods related to blue light blocking measurement are not established. The blue light blocking efficacy was established by referring to the test method of the sunscreen in vitro test(COLIPA guideline, ISO 24443, FDA Final Rule on Sunscreen Testing and Labeling). The blue light blocking effect was evaluated for 17 kinds out of 27 kinds of sunscreen raw materials suggested in KFDA guideline. The Effect was 14.97% for zinc oxide and 16.32% for bishexyloxyphenol methoxyphenyl triazine, 35.47% for methylene bis-benzotriazolyltetramethylbutylphenol, and 65.96% for titanium dioxide. In addition, the effect of micro-titanium dioxide was twice as high as that of the nano-titanium dioxide. The results suggested that the light blocking effect test method can be used to search for blue light blocking materials and study cosmetic formulations.

블루라이트는 가시광선영역의 파장 중 가장 에너지가 높은 파장으로 피부노화 유발 및 활성산소를 유발하는 것으로 알려져 있으며, 피부의 유해 기작에 관한 연구가 진행 중이다. 화장품 분야에서의 블루라이트 차단소재 연구 및 관련 제형연구는 아직 초기 단계에 있으며, 블루라이트 차단 측정과 관련된 시험법 또한 명확하게 정립되어 있지 않다. 블루라이트 차단 효능 평가 시험법은 해외 자외선 차단제의 차단효과 평가 방법을 참고하여 확립하였다. 국내에 고시되어 있는 자외선 차단제 원료 27종 중 17종에 대하여 블루라이트 차단효과를 평가하였으며, 블루라이트 차단 효과는 징크옥사이드가 14.97%, 비스에칠헥실옥시페놀메톡시페닐트리아진이 16.32%, 메칠렌비스-벤조트리아졸릴테트라메칠부틸페놀이 35.47%, 티타늄디옥사이드가 65.96% 순으로 나타났다. 또한 동일 함량의 티타늄디옥사이드의 입자크기에 따른 블루라이트 차단효과를 확인한 결과 Nano-티타늄디옥사이드 보다 Micro-티타늄디옥사이드가 두 배 이상의 차단효과가 높게 나타냈다. 제시된 블루라이트 차단효과 평가 시험법은 블루라이트 차단 소재 탐색 및 화장품 제형 연구에 활용될 수 있을 것이다.

Keywords

References

  1. L. Duteil, N. Cardot-Leccia, C. Queille-Roussel, Y. Maubert, Y. Harmelin, F. Boukari, D. Ambrosetti, J. P. Lacour, and T. Passeron, Differences in visible light-induced pigmentation according to wavelengths: a clinical and histological study in comparison with UVB exposure, Pigm Cell Melanoma R, 27, 822 (2014). https://doi.org/10.1111/pcmr.12273
  2. T. Y. Tzung1, K. H. Wu, and M. L. Huang, Blue light phototherapy in the treatment of acne, Photodiagn Photodyn, 20, 266 (2004).
  3. P. Papageorgiou, A. Katsambas, and A. Chu, Phototherapy with blue (415 nm) and red (660 nm) light in the treatment of acne vulgaris, Brit. J. Dermatol., 142, 973 (2000). https://doi.org/10.1046/j.1365-2133.2000.03481.x
  4. J. B. Lee, S. H. Kim, S. C. Lee, H. G. Kim, H. G. Ahn, Z. Li, and K. C. Yoon, Blue light-induced oxidative stress in human corneal epithelial cells: protective effects of ethanol extracts of various medicinal plant mixtures. Invest. Ophth. Vis. Sci., 55(7), 4119-4127 (2014). https://doi.org/10.1167/iovs.13-13441
  5. J. R. Sparrow, K. Nakanishi, and C. A. Parish, The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells, Invest. Ophth. Vis. Sci., 41(7), 1981 (2000).
  6. Y. Kuse, K. Ogawa, K. Tsuruma, M. Shimazawa, and H. Hara, Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light, Sci. Rep-UK, 4, 5223 (2014).
  7. J. K. Hwang, H. K. Shin, and S. M. Chang, Development of blue light cut films using a roll-to-roll nano micro coating system, Trans. Electr. Electron. Mater., 17(3), 178 (2016). https://doi.org/10.4313/TEEM.2016.17.3.178
  8. S. Hettwer, E. B. Gyenge, and B. Obermayer, Blue light protecting cosmetic active ingredients: A Case Report, J Dermat Cosmetol, 1(4), 23 (2017).
  9. H. Moseley, H. Cameron, T. Macleod, C. Clark, R. Dawe, and J. Ferguson, New sunscreens confer improved protection for photosensitive patients in the blue light region, Brit. J. Dermatol., 145, 789 (2001). https://doi.org/10.1046/j.1365-2133.2001.04429.x
  10. B. L. Dittey and P. M. Farr, Sunscreen protection against UVB, UVA and blue light: an in vivo and in vitro comparison, Brit. J. Dermatol., 124, 258 (1991). https://doi.org/10.1111/j.1365-2133.1991.tb00570.x
  11. S. Schalka, F. A. S. A. Addor, C. M. Agelune, and V. M. C. Pereira, Sunscreen protection against visible light: a new proposal for evaluation, Surg. Cosmet. Dermatol., 3(4), 45 (2012).
  12. D. Moyal, V. Alard, C. Bertin, F. Boyer, M. W. Brown, L. Kolbe, P. Matts, and M. Pissavini, The revised COLIPA in vitro UVA method, IInt. J. Cosmet. Sci., 1, (2012).
  13. L. Fageon, D. Moyal, J. Coutet, and D. Candau, Importance of sunscreen products spreading protocol and substrate roughness for in vitro sun protection factor assessment, Int. J. Cosmet. Sci., 31, 405 (2009). https://doi.org/10.1111/j.1468-2494.2009.00524.x
  14. B. L. Diffey, P. R. Tanner, P. J. Matts, and J. F. Nash, In vitro assessment of the broad-spectrum ultraviolet protection of sunscreen products, J. AM. ACAD. DERMATOL., 43(6), 1024 (2000). https://doi.org/10.1067/mjd.2000.109291
  15. M. Pelizzo, E. Zattra, P. Nicolosi, A. Peserico, D. Garoli, and M. Alaibac, In vitro evaluation of sunscreens: An update for the clinicians, International Scholarly Research Network ISRN Dermatology, 352135, 1 (2012).
  16. L. Ferrero, M. Pissavini, A. Dehais, S. Marguerie, and L. Zastrow, Importance of substrate roughness for In Vitro sun protection assessment, IFSCC, 9(2), 2 (2006).
  17. E. T. Kaye, J. A. Levin, I. H. Blank, K. A. Arndt, and R. R. Anderson, Efficiency of opaque photoprotective agents in the visible light range, Arch. Dermatol., 127, 351 (1991). https://doi.org/10.1001/archderm.1991.01680030071009
  18. A. Salih, O. Hoegh-Guldberg, and G. Cox, Photoprotection of symbiotic dinoflagellates by fluorescent pigments in reef corals, Greenwood JG and NJ Hall (eds) Proc. Australian Coral Reef Soc. 75 th Anniversary Conference, Heron Island, 217 (1998).
  19. D. G. Silva, F. D. Sarruf, L. C. D. Oliveira, E. P. G. Areas, T. M. Kaneko, V. O. Consiglieri, M. V. R. Velasco, and A. R. Baby, Influence of particle size on appearance and in vitro efficacy of sunscreens, Braz. J. Pharm. Sci., 49(2), 251 (2013). https://doi.org/10.1590/S1984-82502013000200007