DOI QR코드

DOI QR Code

자동차 전장을 위한 플렉시블 기판 무연 솔더 접합부 특성

Properties of Lead-free Solder Joints on Flexible Substrate for Automotive Electronics

  • 안성도 (한국생산기술연구원 용접접합그룹/마이크로조이닝센터) ;
  • 최경곤 (인하대학교 신소재공학과) ;
  • 박대영 (한국생산기술연구원 용접접합그룹/마이크로조이닝센터) ;
  • 정규원 (한국생산기술연구원 용접접합그룹/마이크로조이닝센터) ;
  • 백승주 (한국생산기술연구원 용접접합그룹/마이크로조이닝센터) ;
  • 고용호 (한국생산기술연구원 용접접합그룹/마이크로조이닝센터)
  • Ahn, Sungdo (Joining R&D Group, Korea Institute of Industrial Technology) ;
  • Choi, Kyeonggon (Department of Material Science and Engineering, Inha University) ;
  • Park, Dae Young (Joining R&D Group, Korea Institute of Industrial Technology) ;
  • Jeong, Gyu-Won (Joining R&D Group, Korea Institute of Industrial Technology) ;
  • Baek, Seungju (Joining R&D Group, Korea Institute of Industrial Technology) ;
  • Ko, Yong-Ho (Joining R&D Group, Korea Institute of Industrial Technology)
  • 투고 : 2018.06.13
  • 심사 : 2018.06.25
  • 발행 : 2018.06.30

초록

Sn-Pb솔더는 그동안 자동차 전장품에서 많이 사용되어 왔다. 그러나 최근에 환경과 인체에 대한 유해성 때문에 end-of-life vehicle (ELV)과 같은 국제 환경 규제로 인하여 Pb의 사용이 금지되었다. 이러한 이유로 자동차 전장품을 위한 Pb-free 솔더링에 관한 많은 연구들이 보고 되어 왔다. 한편, 자동차의 연료 효율성과 공간 활용을 위하여 유연성과 경량의 특성을 가지는 플렉시블 기판이 자동차 전장품에 사용되고 있다. 자동차 전장품에 대한 Pb-free 솔더 접합부 특성에 관한 연구들이 많이 진행되었음에도 불구하고 자동차의 사용 환경을 고려한 플렉시블 기판 솔더 접합부에 대한 신뢰성 특성에 관한 연구는 아직 부족한 실정이다. 본 연구에서는 organic solderability preservative (OSP) 및 electroless nickel immersion gold (ENIG) 표면처리 된 플렉시블 기판 위 Sn3.0Ag0.5Cu, Sn0.7Cu, Sn0.5Cu0.01Al(Si) 세 가지 Pb-free 솔더 접합부에 대한 특성을 보고 하였다. 솔더 조성과 기판 표면처리에 따른 접합부의 특성 및 신뢰성을 비교 평가 하기 위하여 인장 강도 시험, 열 충격 시험과 반복 굽힘 시험을 진행 하고 그 결과를 분석하였다. OSP 표면처리 된 기판 접합부에 대한 반복 굽힘 시험 결과 세 종류의 솔더 접합부 모두 파괴는 솔더 내부에서 일어 났으며 Sn3.0Ag0.5Cu 솔더의 접합부에서 반복 굽힘 수명이 가장 길게 나타났다.

Sn-Pb solder has been used in automotive electronics for decades. However, recently, due to the environmental and health concerns, some international environmental organizations such as the end-of-life vehicle (ELV) enacted legislation banning of the Pb usage in automotive electronics. For this reason, many studies to develop and promote Pb-free soldering have been significantly reported. Meanwhile, because of flexibility and lightweight, flexible printed circuit boards (FPCBs) have been increasingly used in automotive electronics for lightweight to improve fuel efficiency and space utilization. Although the properties of lead-free solders for automotive electronics have been widely studied, there is a lack of research on the reliability performance of the lead-free solder joint on FPCB under user conditions. This study reported the properties of solder joints between Pb-free solders such as Sn3.0Ag0.5Cu, Sn0.7Cu and Sn0.5Cu0.01Al (Si), and various FPCBs finished with organic solderability preservative (OSP) and electroless nickel immersion gold (ENIG). To evaluate on joint properties and reliabilities with different solder compositions and surface-finishing materials, pull strength test, thermal shock test, and bending cycle test were performed and analyzed. After the bending cycle test of solder joint on OSP-finishing, the fractures were occurred in solder and the lifetime of Sn3.0Ag0.5Cu solder joint was the longest.

키워드

참고문헌

  1. W. S. Hong, C. Oh, M.-S. Kim, Y. W. Lee, H. J. Kim, S. J. Hong, and J. T. Moon, "Al and Si Alloying Effect on Solder Joint Reliability in Sn-0.5Cu for Automotive Electronics", J. Electron. Mater., 45(12), 6150 (2016). https://doi.org/10.1007/s11664-016-4837-2
  2. S. K. Kang, and A. K. Sarkhel, "Lead (Pb)-free Solders for Electronic Packaging", J. Electron. Mater., 23(8), 701 (1994). https://doi.org/10.1007/BF02651362
  3. A. A. El-Daly, and A. E. Hammad, "Enhancement of Creep Resistance and Thermal Behavior of Eutectic Sn-Cu Lead-free Solder Alloy by Ag and In-additions", Mater. Des., 40, 292 (2012). https://doi.org/10.1016/j.matdes.2012.04.007
  4. Y. H. Ko, S. Yoo, and C. W. Lee, "Evaluation on Reliability of High Temperature Lead-free Solder for Automotive Electronics" (in Korean), J. Microelectron. Packag. Soc., 17(4), 35 (2010).
  5. S. Jin, N. Kang, K. M. Cho, C. W. Lee, and W. Hong, "Behavior of Vibration Fracture for Sn-Ag-Cu-X Solders by Soldering", J. Weld. Join., 30(2), 65 (2012). https://doi.org/10.5781/KWJS.2012.30.2.169
  6. 4. R. W. Johnson, J. L. Evans, P. Jacobsen, J. R. Thompson, and M. Christopher, "The Changing Automotive Environment:High-Temperature Electronics", IEEE Trans. Electron. Pack. Manu., 27(3), 164 (2004). https://doi.org/10.1109/TEPM.2004.843109
  7. M. S. Kim, Y. H. Ko, J. H. Bnag, and C. W. Lee, "The Chip Bonding Technology on Flexible Substrate by Using Micro Lead-free Solder Bump"(in Korean), J. Microelectron. Packag. Soc., 19(3), 15 (2012). https://doi.org/10.6117/kmeps.2012.19.3.015
  8. J. Kim, C. Park, K. M. Cho, W. Hong, J. H. Bang, Y. H. Ko, and N. Kang, "Oxidation and Repeated-Bending Properties of Sn-Based Solder Joints After Highly Accelerated Stress Testing (HAST)", Electron. Mater. Lett., 1 (2018).
  9. C. E. Ho, R. Y. Tsai, Y. L. Lin, and C. R. Kao, "Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni", J. Electron. Mater., 31(6), 584 (2002). https://doi.org/10.1007/s11664-002-0129-0
  10. R. Darveaux, C. Reichman, and N. Islam, "Interface failure in lead free solder joints", Proc. 56th Electronic Components and Technology Conference (ECTC), San Diego, 906 (2006).
  11. L. Chen, Y. Feng, X. Liu, and M. Huang, "Effects of temperature and current density on (Au, Pd, Ni) $Sn_{4}$ redistribution and Ni-P consumption in Ni/Sn3.0Ag0.5Cu/ENEPIG flip chip solder joints", Proc. 14th International Conference on Electronic Packaging Technology (ICEPT), Dalian, 1064 (2013).