DOI QR코드

DOI QR Code

스퍼터링 증착법을 이용한 ZnO/Al/ZnO 구조의 유연투명전극 연구

Aluminum based ZnO/Al/ZnO flexible Transparent Electrodes Fabricated by Magnetron sputtering

  • 방금혁 (동의대학교 신소재공학부) ;
  • 최두호 (동의대학교 신소재공학부)
  • Bang, GeumHyuck (School of Advanced Materials Engineering, Dong-Eui University) ;
  • Choi, Dooho (School of Advanced Materials Engineering, Dong-Eui University)
  • 투고 : 2018.06.13
  • 심사 : 2018.06.27
  • 발행 : 2018.06.30

초록

차세대 유연 광전소자 적용을 위한 금속-산화물 샌드위치 구조인 ZnO/Al/ZnO 박막의 유연투명전극 기초연구를 수행하였다. 모든 증착은 유연성을 가지는 PET 기판 상에서 이루어졌으며, 상 하부 ZnO층의 두께가 광 투과도에 미치는 영향을 확인하기 위하여 Al 층의 두께는 모두 8 nm로 고정시킨 채 상부 ZnO 층의 두께는 5-70 nm, 하부 ZnO 층의 두께는 2.5-20 nm까지 변화를 주었다. 가시광선영역(380 nm-770 nm) 파장대를 가지는 광원의 투과도에 대하여 측정한 결과, 상부 ZnO 층의 두께가 30 nm이며 하부 ZnO 층의 경우 2.5 nm 일 때 가장 높은 투과도를 보였다. 400 nm 파장기준 투과도 62%, 면저항 $19{\Omega}/{\Box}$, 그리고 곡률반경 5 mm 조건에서의 휨 테스트 후 면저항과 투과도의 변화가 발생하지 않는 ZnO/Al/ZnO 유연투명전극 결과를 보고한다.

In this study, the feasibility of ZnO/Al/ZnO flexible transparent electrodes for future flexible optoelectronic devices was investigated. All depositions were performed on PET substrates. The thicknesses of the top and bottom ZnO layers were 5-70 nm and 2.5-20 nm, respectively. The highest visible light transmittance was recorded when the thicknesses of the top and bottom ZnO layers 30 nm and 2.5 nm, respectively. 62% optical transmittance (at the wavelength of 400 nm) and sheet resistance of $19{\Omega}/{\Box}$ were measured. After repetitive bending test at a curvature radius of 5 mm, the transmittance and sheet resistance did not change.

키워드

참고문헌

  1. Y. W. Gwon, and B. J. Kim, "Mechanical and Electrical Failure of ITO Film with Different Shape during Twisting Deformation", J. Microelectron. Packag. Soc. 24(4), 53 (2017). https://doi.org/10.6117/KMEPS.2017.24.4.053
  2. J. H. Lee, P. Lee, H. M. Lee, D. J. Lee, S. S. Lee, and S. H. Ko, "Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel", Nanoscale, 4, 6408 (2012). https://doi.org/10.1039/c2nr31254a
  3. J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, "Organic solar cells with solution-processed graphene transparent electrodes", Appl. Phys. Lett., 92, 263302 (2008). https://doi.org/10.1063/1.2924771
  4. D. S. Hecht, D. Thomas, L. Hu, C. Ladous, T. Lam, Y. B. Park, G. Irvin, P. Drzaic, "Carbon-nanotube film on plastic as transparent electrode for resistive touch screens", Journal of the SID, 17(11), 941 (2009).
  5. J. H. Yun, "Transparent Ultrathin Oxygen-Doped Silver Electrodes for Flexible Organic Solar Cells", Adv. Funct. Mater., 1606641, 1 (2017).
  6. G. Zhao, W. Wang, T.-S. Bae, S.-G. Lee, C. W. Mun, S. H. Lee, H. Yu, G.-H. Lee, M. K. Song, and J. H. Yun, "Stable ultrathin partially oxidized copper film electrode for highly efficient flexible solar cells", Nature communications, 6, 8830 (2015). https://doi.org/10.1038/ncomms9830
  7. J. G. Jang, Y. G. Lim, and Y. W. Hwang, "Antireflection layer Coating on the Epitaxial Base Si Solar Cell", Proc. International Microelectronics And Packaging Society Conference, 26, 141 (2003).
  8. K. Fuchs, "The conductivity of thin metallic films according to the electron theory of metals", Proc. Cambridge Philos. Soc., 34, 100 (1938). https://doi.org/10.1017/S0305004100019952
  9. E. H. Sondheimer, "The mean free path of electrons in metals", Advances in Physics, 1(1), 1 (1952). https://doi.org/10.1080/00018735200101151
  10. A. F. Mayadas, and M. Shatzkes, "Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces", Phys. Rev., B1, 1382 (1970).
  11. D. Gall, "Electron mean free path in elemental metals", Journal of Applied Physics, 119(8), 085101 (2016). https://doi.org/10.1063/1.4942216
  12. J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Thompson, "The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer-Weber thin films", Journal of Applied Physics, 89, 4886 (2001). https://doi.org/10.1063/1.1352563
  13. J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Thompson, "The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer-Weber thin films", Journal of Applied Physics, 89, 4886 (2001). https://doi.org/10.1063/1.1352563
  14. D. Choi, and K. Barmak, "On the potential of tungsten as next-generation semiconductor interconnects", Electronic Materials Letters, 13, 449 (2017). https://doi.org/10.1007/s13391-017-1610-5
  15. W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, "Influence of the electron mean free path on the resistivity of thin metal films", Micro-electronic Engineering, 76, 146 (2004). https://doi.org/10.1016/j.mee.2004.07.041
  16. Y. Lantasov, R. Palmans, and K. Maex, "New plating bath for electroless copper deposition on sputtered barrier layers", Microelectronic Engineering, 50, 441 (2000). https://doi.org/10.1016/S0167-9317(99)00313-5
  17. W. Zhang, S. H. Brongersma, T. Clarysse, V. Terzieva, E. Rosseel, W. Vandervorst, and K. Maex, "Surface and grain boundary scattering studied in beveled polycrystalline thin copper films", Journal of Vacuum Science & Technology, B22, 1830 (2004).
  18. C. Zhang, D. Zhao, D. Gu, H. S. Kim, T. Ling, Y. K. R. Wu, and L. J. Guo, "An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics", Adv. Mater., 26, 5696 (2014). https://doi.org/10.1002/adma.201306091