DOI QR코드

DOI QR Code

Experimental Study on Oscillatory Behavior of Hydraulic Jump Roller

도수 롤러의 거동 분석을 위한 실험 연구

  • Park, Moonhyung (Dept of Land, Water Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Hyung Suk (Dept of Land, Water Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Choi, Seohye (Dept of Land, Water Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Ryu, Yonguk (Dept of Ocean Engineering, Pukyong National University)
  • 박문형 (한국건설기술연구원 국토연구보전본부) ;
  • 김형석 (한국건설기술연구원 국토연구보전본부) ;
  • 최서혜 (한국건설기술연구원 국토연구보전본부) ;
  • 류용욱 (부경대학교 해양공학과)
  • Received : 2018.12.24
  • Accepted : 2018.12.27
  • Published : 2018.12.31

Abstract

This study conducted an experimental investigation on oscillatory behavior of the hydraulic jump roller. Based on the similarity of the hydraulic jump and tidal bore, the behavior of the front face of hydraulic jump with increasing downstream water depth was studied focusing on profile and fluctuation. In this study, for statistical approach, the ensemble averaging was applied to obtain relevant front profile and compared with the time averaging. The front profile gets mildly sloped and the fluctuation of the starting point of hydraulic jump decreases as the downstream water depth increases.

본 연구는 도수(hydraulic jump)의 롤러(roller)의 거동을 분석하기 위해 영상기법을 이용한 실험연구를 수행하였다. 조석단파(tidal bore)의 거동 특성의 이해에 적용하기 위해 하류심 상승에 따른 도수 전면부의 파형과 변동성을 검토하였다. 도수의 변동성을 고려한 앙상블평균 기법을 적용하여 얻은 파형을 제시하여 시간평균 결과와 비교하였다. 앙상블평균의 기준이 된 도수시작점의 시간적 변화로부터 도수 전면부의 변동성을 통계적으로 분석하였다. 하류심 상승에 따라 전면 파형은 완만해지는 것으로 나타났으며, 시작점 변동성은 감소하였다.

Keywords

References

  1. Chang, K.-A. and Liu, P.L.-F. (1999). Experimental investigation of turbulence generated by breaking waves in water of intermediate depth. Physics of Fluids, 11, 3390-3400. https://doi.org/10.1063/1.870198
  2. Chanson, H. (2012). Momentum considerations in hydraulic jumps and bores. Journal of Irrigation and Drainage Engineering, 138(4), 382-385. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000409
  3. Leng, X. and Chanson, H. (2015). Turbulent advances of a breaking bore: Preliminary physical experiments. Experimental Thermal Fluid Science, 62, 70-77. https://doi.org/10.1016/j.expthermflusci.2014.12.002
  4. Long, D., Rajaratnam, N., Steffler, P.M. and Smy, P.R. (1991). Structure of flow in hydraulic jumps. Journal of Hydraulic Research, 29(2), 207-218. https://doi.org/10.1080/00221689109499004
  5. Mossa, M. (1999). On the oscillating characteristics of hydraulic jumps. Journal of Hydraulic Research, 37(4), 541-558. https://doi.org/10.1080/00221686.1999.9628267
  6. Murzyn, F. and Chanson, H. (2009). Free-surface fluctuations in hydraulic jumps: experimental observations. Experimental Thermal Fluid Science, 33(7), 1055-1064. https://doi.org/10.1016/j.expthermflusci.2009.06.003
  7. Peregrine, D.H. and Svendsen, I.A. (1978). Spilling breakers, bores and hydraulic jumps, in: A.D. Short (Ed.), Proc. of 16th International Conference on Coastal Engineering, ASCE, Hamburg, Germany, 540-550 (Chapter 30).
  8. Ryu, Y., Chang, K.-A. and Lim, H.-J. (2005). Use of bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater. Measurement Science and Technology, 16, 1945-1953. https://doi.org/10.1088/0957-0233/16/10/009
  9. Ryu, Y.U., Lee, J.I. and Kim, Y.T. (2007). Runup and overtopping velocity due to wave breaking. Journal of Korean Society of Coastal and Ocean Engineers, 19(6), 606-613.