• Title/Summary/Keyword: tidal bore

Search Result 4, Processing Time 0.018 seconds

Real-time Modeling and Rendering of Tidal in Qiantang Estuary

  • Wang, Chang-Bo
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.79-83
    • /
    • 2010
  • Tidal bore is a peculiar nature phenomenon which is caused by the lunar and solar gravitation. Based on the physical characters of tidal bores, in this paper we propose a novel method to model and render this phenomenon, especially the tidal waves in Qiantang estuary. According to Boltzmann equation for tidal waves, we solve it with the novel triangle mesh of Kinectic Flux Vector Splitting (KFVS) mode. Then a method combining a curve forecasting wave and particles model is proposed to render the dynamic scenes of overturning tidal waves. Finally, with some rendering technologies, various realistic tidal waves under diversified conditions is rendered in real time.

Characteristics of Water Level and Velocity Changes due to the Propagation of Bore (단파의 전파에 따른 수위 및 유속변화의 특성에 관한 연구)

  • Lee, Kwang Ho;Kim, Do Sam;Yeh, Harry
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.575-589
    • /
    • 2008
  • In the present work, we investigate the hydrodynamic behavior of a turbulent bore, such as tsunami bore and tidal bore, generated by the removal of a gate with water impounded on one side. The bore generation system is similar to that used in a general dam-break problem. In order to the numerical simulation of the formation and propagation of a bore, we consider the incompressible flows of two immiscible fluids, liquid and gas, governed by the Navier-Stokes equations. The interface tracking between two fluids is achieved by the volume-of-fluid (VOF) technique and the M-type cubic interpolated propagation (MCIP) scheme is used to solve the Navier-Stokes equations. The MCIP method is a low diffusive and stable scheme and is generally extended the original one-dimensional CIP to higher dimensions, using a fractional step technique. Further, large eddy simulation (LES) closure scheme, a cost-effective approach to turbulence simulation, is used to predict the evolution of quantities associated with turbulence. In order to verify the applicability of the developed numerical model to the bore simulation, laboratory experiments are performed in a wave tank. Comparisons are made between the numerical results by the present model and the experimental data and good agreement is achieved.

Experimental Study on Oscillatory Behavior of Hydraulic Jump Roller (도수 롤러의 거동 분석을 위한 실험 연구)

  • Park, Moonhyung;Kim, Hyung Suk;Choi, Seohye;Ryu, Yonguk
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.319-325
    • /
    • 2018
  • This study conducted an experimental investigation on oscillatory behavior of the hydraulic jump roller. Based on the similarity of the hydraulic jump and tidal bore, the behavior of the front face of hydraulic jump with increasing downstream water depth was studied focusing on profile and fluctuation. In this study, for statistical approach, the ensemble averaging was applied to obtain relevant front profile and compared with the time averaging. The front profile gets mildly sloped and the fluctuation of the starting point of hydraulic jump decreases as the downstream water depth increases.