Fig. 1. SEM images and XRD pattern of the as-spun nanofibers: (a) low and (b) high-magnification FE-SEM images and (c) XRD pattern.
Fig. 2. SEM images and XRD pattern of the nanofibers after initial heat-treatment at 500 ℃ for 3 h under 5% H2/Ar atmosphere: (a) low and (b) high-magnification FE-SEM images and (c) XRD pattern.
Fig. 3. FT-IR spectra of the nanofibers (a) before and (b) after initial heat-treatment at 500 ℃ for 3 h under 5% H2/Ar atmosphere.
Fig. 4. XRD pattern, Morphologies, SAED pattern, and elemental mapping images of the porous nanofibers comprising hollow α-Fe2O3 nanospheres: (a) XRD pattern, (b) FE-SEM image, (c) TEM image, (d,e) HR-TEM images, (f) SAED pattern, and (g) elemental mapping images.
Fig. 5. FE-SEM images of the nanofibers prepared using the solution without PS nanobeads: (a, b) as-spun nanofibers, (c, d) nanofibers obtained after initial heat-treatment at 500 ℃ for 3 h under 5% H2/Ar atmosphere, and (e, f) nanofibers obtained after second heat-treatment at 500 ℃ for 3 h under air atmosphere.
Fig. 7. Electrochemical performance of the porous nanofibers comprising hollow Fe2O3 nanospheres and solid structured α-Fe2O3 nanofibers: (a), (b) discharge-charge curves and (c) cycling performances at a current density of 1.0 A g-1.
Fig. 6. (a) N2 adsorption and desorption isotherms and (b) BJH desorption pore-size distribution of the porous nanofibers comprising hollow α-Fe2O3 nanospheres and solid structured α-Fe2O3 nanofibers.
참고문헌
- Bruce, P. G., Scrosati, B. and Tarascon, J. M., "Nanomaterials for Rechargeable Lithium Batteries," Angew. Chem. Int. Ed., 47(16), 2930-2946(2008). https://doi.org/10.1002/anie.200702505
- Sun, Y., Liu, N. and Cui, Y., "Promises and Challenges of Nanomaterials for Lithium-Based Rechargeable Batteries," Nat. Energy, 1(7), 16071(2016). https://doi.org/10.1038/nenergy.2016.71
- Yu, S. H., Lee, S. H., Lee, D. J., Sung, Y. E. and Hyeon, T., "Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes," Small, 12(16), 2146-2172(2016). https://doi.org/10.1002/smll.201502299
-
Jayaraman, S., Aravindan, V., Suresh Kumar, P., Chui Ling, W., Ramakrishna, S. and Madhavi, S., "Exceptional Performance of
$TiNb_2O_7$ Anode in All One-Dimensional Architecture by Electrospinning," ACS Appl. Mater. Interfaces, 6(11), 8660-8666(2014). https://doi.org/10.1021/am501464d -
Zhang, L., Zhang, G., Wu, H. B., Yu, L. and Lou, X. W. D., "Hierarchical Tubular Structures Constructed by Carbon-Coated
$SnO_2$ Nanoplates for Highly Reversible Lithium Storage," Advanced Materials, 25(18), 2589-2593(2013). https://doi.org/10.1002/adma.201300105 - Wu, H. B., Zhang, G., Yu, L. and Lou, X. W. D., "One-Dimensional Metal Oxide-Carbon Hybrid Nanostructures for Electrochemical Energy Storage," Nanoscale Horizons, 1(1), 27-40(2016). https://doi.org/10.1039/C5NH00023H
-
Park, S.-K., Lee, J., Bong, S., Jang, B., Seong, K.-D. and Piao, Y., "Scalable Synthesis of Few-Layer
$MoS_2$ Incorporated into Hierarchical Porous Carbon Nanosheets for High-Performance Li-and Na-Ion Battery Anodes," ACS Appl. Mater. Interfaces, 8(30), 19456-19465(2016). https://doi.org/10.1021/acsami.6b05010 - Dou, P., Cao, Z., Zheng, J., Wang, C. and Xu, X., "Solid Polymer Electrolyte Coating Three-Dimensional Sn/Ni Bimetallic Nanotube Arrays for High Performance Lithium-Ion Battery Anodes," J. Alloys Compd., 685, 690-698(2016). https://doi.org/10.1016/j.jallcom.2016.05.218
- Goriparti, S., Miele, E., De Angelis, F., Di Fabrizio, E., Zaccaria, R. P. and Capiglia, C., "Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries," J. Power Sources, 257, 421-443(2014). https://doi.org/10.1016/j.jpowsour.2013.11.103
- Son, Y., Son, Y., Choi, M., Ko, M., Chae, S., Park, N. and Cho, J., "Hollow Silicon Nanostructures via the Kirkendall Effect," Nano Letters, 15(10), 6914-6918(2015). https://doi.org/10.1021/acs.nanolett.5b02842
- Wang, Q., Chen, S., Shi, F., Chen, K., Nie, Y., Wang, Y., Wu, R., Li, J., Zhang, Y., Ding, W., Li, Y., Li, L. and Wei, Z., "Structural Evolution of Solid Pt Nanoparticles to a Hollow PtFe Alloy with a Pt-Skin Surface via Space-Confined Pyrolysis and the Nanoscale Kirkendall Effect," Advanced Materials, 28(48), 10673-10678 (2016). https://doi.org/10.1002/adma.201603509
- Park, G. D., Cho, J. S. and Kang, Y. C., "Sodium-Ion Storage Properties of Nickel Sulfide Hollow Nanospheres/Reduced Graphene Oxide Composite Powders Prepared by a Spray Drying Process and the Nanoscale Kirkendall Effect," Nanoscale, 7(40), 16781-16788(2015). https://doi.org/10.1039/C5NR04252F
-
Cho, J. S., Hong, Y. J. and Kang, Y. C., "Design and Synthesis of Bubble-Nanorod-Structured
$Fe_2O_3$ -Carbon Nanofibers as Advanced Anode Material for Li-Ion Batteries," ACS nano, 9(4), 4026-4035 (2015). https://doi.org/10.1021/acsnano.5b00088 -
Li, L., Li, Z., Fu, W., Li, F., Wang, J. and Wang, W., "
${\alpha}Fe_2O_3$ @C Nanorings as Anode Materials for High Performance Lithium Ion Batteries," J. Alloys Compd., 647, 105-109(2015). https://doi.org/10.1016/j.jallcom.2015.05.204 - Shapi, M. and Hesso, A., "Thermal Decomposition of Polystyrene: Volatile Compounds from Large-Scale Pyrolysis," J. Anal. Appl. Pyrolysis, 18(2), 143-161(1990). https://doi.org/10.1016/0165-2370(90)80004-8
- Liu, Y., Liu, Q., Gu, J., Kang, D., Zhou, F., Zhang, W., Wu, Y. and Zhang, D., "Highly Porous Graphitic Materials Prepared by Catalytic Graphitization," Carbon, 64, 132-140(2013). https://doi.org/10.1016/j.carbon.2013.07.044
- Oya, A. and Marsh, H., "Phenomena of Catalytic Graphitization," J. Mater. Sci., 17(2), 309-322(1982). https://doi.org/10.1007/BF00591464
-
Jeong, S. Y., Park, S.-K., Kang, Y. C. and Cho, J. S., "One-Dimensional Nanostructure Comprising
$MoSe_2$ Nanosheets and Carbon with Uniformly Defined Nanovoids as an Anode for High-Performance Sodium-Ion Batteries," Chem. Eng. J., 351, 559-568 (2018). https://doi.org/10.1016/j.cej.2018.06.130 -
Olmos, D., Martin, E. and Gonzalez-Benito, J., "New Molecular- Scale Information on Polystyrene Dynamics in PS and PS-
$BaTiO_3$ Composites from FTIR Spectroscopy," Phys. Chem. Chem. Phys., 16(44), 24339-24349(2014). https://doi.org/10.1039/c4cp03516j -
Cho, J. S., Kang, Y. C., "Nanofibers Comprising Yolk-Shell Sn@Void@SnO/
$SnO_2$ and Hollow SnO/$SnO_2$ and$SnO_2$ Nanospheres via the Kirkendall Diffusion Effect and Their Electrochemical Properties," Small, 11(36), 4673-4681(2015). https://doi.org/10.1002/smll.201500940 - El Mel, A.-A., Nakamura, R. and Bittencourt, C., "The Kirkendall Effect and Nanoscience: Hollow Nanospheres and Nanotubes," Beilstein J. Nanotechnol., 6, 1348(2015). https://doi.org/10.3762/bjnano.6.139
- Cho, J. S. and Kang, Y. C., "All-in-One Beaker Method for Large-Scale Production of Metal Oxide Hollow Nanospheres Using Nanoscale Kirkendall Diffusion," ACS Appl. Mater. Interfaces, 8(6), 3800-3809(2016). https://doi.org/10.1021/acsami.5b10278
-
Zhang, X., Liu, H., Petnikota, S., Ramakrishna, S. and Fan, H. J., "Electrospun
$Fe_2O_3$ -Carbon Composite Nanofibers as Durable Anode Materials for Lithium Ion Batteries," J. Mater. Chem. A, 2(28), 10835-10841(2014). https://doi.org/10.1039/c3ta15123a -
Cho, J. S., Park, J.-S., Jeon, K. M. and Kang, Y. C., "1-D Nanostructure Comprising Porous
$Fe_2O_3$ /Se Composite Nanorods with Numerous Nanovoids, and Their Electrochemical Properties for Use in Lithium-Ion Batteries," J. Mater. Chem. A, 5(21), 10632-10639(2017). https://doi.org/10.1039/C7TA02616A - Zhang, G., Wu, H. B., Hoster, H. E. and Lou, X. W. D., "Strongly Coupled Carbon Nanofiber-Metal Oxide Coaxial Nanocables with Enhanced Lithium Storage Properties," Energy Environ. Sci., 7(1), 302-305(2014). https://doi.org/10.1039/c3ee43123a