Fig. 1. Schematics for fabricating of fluorescent labeled bi-compartmental particles via the micromolding method.
Fig. 3. (a) The confocal microscope image of the hydrophilic part labeled by nile blue acrylamide (NBAM) at 638 nm laser. (b) The confocal microscope image of the hydrophobic part labeled by fluorescein o-acrylate (FA) at 488 nm laser. (c) The merged images of (a) and (b). (d) Measurement of fluorescence intensity of bi-compartmental particles along the white dotted line of the inserted image. Scale bars are 50 μm.
Fig. 5. Long-term fluorescence stability of bi-compartmental particles containing fluorescein o-acrylate (FA) and nile blue acrylamide (NBAM).
Fig. 2. (a) Chemical structures of fluorescent dyes. (b) Excitation and emission spectra of fluorescein o-acrylate (FA), nile blue acrylamide (NBAM).
Fig. 4.Water contact angle measurements of the hydrophilic film without nile blue acrylamide (NBAM), the hydrophilic film with nile blue acrylamide (NBAM), the hydrophobic film without fluorescein o-acrylate (FA), and the hydrophobic film with fluorescein o-acrylate (FA).
참고문헌
- Chestnut, M. H., "Confocal Microscopy of Colloids," Curr. Opin. Colloid Interface Sci., 2, 158-161(1997). https://doi.org/10.1016/S1359-0294(97)80020-9
- Murray, C. A. and Grier, D. G., "Video Microscopy of Monodisperse Colloidal Systems," Annu. Rev. Phys. Chem., 47, 421-462(1996). https://doi.org/10.1146/annurev.physchem.47.1.421
- Dinsmore, A. D., Weeks, E. R., Prasad, V., Levitt, A. C. and Weitz, D. A., "Three-dimensional Confocal Microscopy of Colloids," Appl. Opt., 40(24), 4152-4159(2001). https://doi.org/10.1364/AO.40.004152
- Blaaderen, A. V., Peetermans, J., Maret, G. and Dhont, J. K. G., "Long-time Self-Diffusion of Spherical Colloidal Particles Measured with Fluorescence Recovery after Photobleaching," J. Chem. Phys., 96(6), 4591-4603(1992). https://doi.org/10.1063/1.462795
- Moschakis, T., Murray, B. S. and Dickinson, E., "Particle Tracking Using Confocal Microscopy to Probe the Microrheology in a Phase-separating Emulsion Containing Nonadsorbing Polysaccharide," Langmuir, 22, 4710-4719(2006). https://doi.org/10.1021/la0533258
- Ruthardt, N., Lamb, D. C. and Bräuchle, C., "Single-particle Tracking as a Quantitative Microscopy-based Approach to Unravel Cell Entry Mechanisms of Viruses and Pharmaceutical Nanoparticles," Mol. Ther., 19(7), 1199-1211(2011). https://doi.org/10.1038/mt.2011.102
- Kim, J., Choi, C. H., Yeom, S. J., Eom, N., Kang, K. K. and Lee, C. S., "Directed Assembly of Janus Cylinders by Controlling the Solvent Polarity," Langmuir, 33, 7503-7511(2017). https://doi.org/10.1021/acs.langmuir.7b01252
- Mohraz, A. and Solomon, M. J., "Direct Visualization of Colloidal Rod Assembly by Confocal Microscopy," Langmuir, 21, 5298-5306(2005). https://doi.org/10.1021/la046908a
- McGorty, R., Fung, J., Kaz, D. and Manoharan, V. N., "Colloidal Self-assembly at an Interface," Mater. Today, 13, 34-42(2010).
- Oh, S., Kang, W. K., Kang, J. W., Kim, K. S. and Lee, H., "Conversion of CdTe Nanoparticles into Nanoribbons via Self-Assembly," Korean Chem. Eng. Res., 50(6), 1082-1085(2012). https://doi.org/10.9713/kcer.2012.50.6.1082
- Costanzo, M., Carton, F., Marengo, A., Berlier, G., Stella, B., Arpicco, S. and Malatesta, M., "Fluorescence and Electron Microscopy to Visualize the Intracellular Fate of Nanoparticles for Drug Delivery," Eur. J. Histochem., 60(2), 107-115(2016).
- Zhang, L. W. and Monteiro-Riviere, N. A., "Use of Confocal Microscopy for Nanoparticle Drug Delivery through Skin," J. Biomed. Opt., 18(6), 061214-1-5(2013). https://doi.org/10.1117/1.JBO.18.6.061214
- Jeon, W., Kim, G. Y., Kim, G. H. and Ha, C. S., "Preparation and Characterization of Multilayer Microcapsules using Biocompatible Polymers," Korean Chem. Eng. Res., 48(2), 178-184(2010).
- Lee, Y. C. and Kang, I. J., "Preparation of Chitosan-Gold and Chitosan-Silver Nanodrug Carrier Using QDs," Korean Chem. Eng. Res., 54(2), 200-205(2016). https://doi.org/10.9713/KCER.2016.54.2.200
- Hwang, J., Lee, K., Gilad, A. A. and Choi, J., "Synthesis of Beta-glucan Nanoparticles for the Delivery of Single Strand DNA," Biotechnol. Bioprocess Eng., 23, 144-149(2018). https://doi.org/10.1007/s12257-018-0003-4
- Reenan, A. V., Jong, A. M. D., Toonder, J. M. J. D. and Prins, M. W. J., "Integrated Lab-on-chip Biosensing Systems Based on Magnetic Particle Actuation - a Comprehensive Review," Lab Chip, 14, 1966-1986(2014). https://doi.org/10.1039/C3LC51454D
- Bally, M., Graule, M., Parra, F., Larson, G. and Hook, F., "A Virus Biosensor with Single Virus-particle Sensitivity Based on Fluorescent Vesicle Labels and Equilibrium Fluctuation Analysis," Bioinerphases, 8(1), 1-9(2013). https://doi.org/10.1186/1559-4106-8-1
- Bhunia, S. K., Saha, A., Maity, A. R., Ray, S. C. and Jana, N. R., "Carbon Nanoparticle-based Fluorescent Bioimaging Probes," Sci. Rep., 3(1473), 1-7(2013).
- Zrazhevskiy, P., Sena, M. and Gao, X., "Designing Multifunctional Quantum Dots for Bioimaging, Detection, and Drug Delivery," Chem. Soc. Rev., 39(11), 4326-4354(2010). https://doi.org/10.1039/b915139g
- Chaudhary, V. and Bhowmick, A. K., "Green Synthesis of Fluorescent Carbon Nanoparticles from Lychee (Litchi chinensis) Plant," Korean J. Chem. Eng., 32(8), 1707-1711(2015). https://doi.org/10.1007/s11814-014-0381-z
- Lee, E. J., "Recent Advances in Protein-based Nanoparticles," Korean J. Chem. Eng., 35(9), 1765-1778(2018). https://doi.org/10.1007/s11814-018-0102-0
- Kim, Y. M., Kim, J. H., Park, S. C., Park, Y. H. and Kang, M. K., "Characteristic as a Gene Delivery System of Water Soluble Chitosan Conjugated with Cationic Peptide," KSBB J., 31(4), 300-311(2016). https://doi.org/10.7841/ksbbj.2016.31.4.300
- Choi, E. S., Kang, Y. Y. and Mok, H., "Evaluation of the Enhanced Antioxidant Activity of Curcumin within Exosomes by Fluorescence Monitoring, " Biotechnol. Bioprocess Eng., 23, 150-157(2018). https://doi.org/10.1007/s12257-018-0058-2
- Lee, J. S., Go, N. K., Lee, S. Y. and Hur, W., "Uptake of Fibroin Microspheres by 3T3 Cells," KSBB J., 29(5), 328-335(2014). https://doi.org/10.7841/ksbbj.2014.29.5.328
- Yi, Y., Sanchez, L., Gao, Y. and Yu, Y., "Janus Particles for Biological Imaging and Sensing," Analyst, 141(12), 3526-3539(2016). https://doi.org/10.1039/c6an00325g
- Choi, C. H., Kang, S. M., Jin, S. H., Yi, H. and Lee, C. S., "Controlled Fabrication of Multicompartmental Polymeric Microparticles by Sequential Micromolding via Surface-Tension-Induced Droplet Formation," Langmuir, 31(4), 1328-1335(2015). https://doi.org/10.1021/la504404y
- Hwang, S. and Lahann, J., "Differentially Degradable Janus Particles for Controlled Release Applications, " Macromol. Rapid Commun., 33, 1178-1183(2012). https://doi.org/10.1002/marc.201200054
- Sanchez, L., Patton, P., Anthony, S. M., Yi, Y. and Yu, Y., "Tracking Single-particle Rotation during Macrophage Uptake," Soft Matter, 11, 5346-5352(2015). https://doi.org/10.1039/C5SM00893J
- Hong, L., Cacciuto, A., Luijten, E., and Granick, S., "Clusters of Charged Janus Spheres," Nano Lett., 6(11), 2510-2514(2006). https://doi.org/10.1021/nl061857i
- Kang, S. M., Choi, C. H., Kim, J., Yeom, S. J., Lee, D., Park, B. J. and Lee, C. S., "Capillarity-induced Directed Self-assembly of Patchy Hexagram Particles at the Air-water Interface," Soft Matter, 12, 5847-5853(2016). https://doi.org/10.1039/C6SM00270F
- Tang, J. L., Schoenwald, K., Potter, D., White, D. and Sulchek, T., "Bifunctional Janus Microparticles with Spatially Segregated Proteins," Langmuir, 28, 10033-10039(2012). https://doi.org/10.1021/la3010079
- Nie, Z., Li, W., Seo, M., Xu, S. and Kumacheva, E., "Janus and Ternary Particles Generated by Microfluidic Synthesis: Design, Synthesis, and Self-assembly," J. Am. Chem. Soc., 128, 9408-9412(2006). https://doi.org/10.1021/ja060882n
- Seiffert, S. and Weitz, D. A., "Microfluidic Fabrication of Smart Microgels from Macromolecular Precursors," Polymer, 51, 5883-5889(2010). https://doi.org/10.1016/j.polymer.2010.10.034
- Choi, C. H., Lee, J., Yoon, K., Tripathi, A., Stone, H. A., Weitz, D. A. and Lee, C. S., "Surface-tension-induced Synthesis of Complex Particles Using Confined Polymeric Fluids," Angew. Chem., Int. Ed., 49, 7748-7752(2010). https://doi.org/10.1002/anie.201002764
- Yeom, S. J., Kang, S. M., Kim, J., Nam, J. O., Eom, N., Lee, S. and Lee, C. S., "Fabrication of Multicompartment Particles via Sequential Micromolding Method," Polym. Korea, 40(3), 457-463(2016). https://doi.org/10.7317/pk.2016.40.3.457
- Love, J. C., Wolfe, D. B., Jacobs, H. O. and Whitesides, G. M., "Microscope Projection Photolithography for Rapid Prototyping of Masters with Micron-Scale Features for Use in Soft Lithography," Langmuir, 17, 6005-6012(2001). https://doi.org/10.1021/la010655t
- Hwang, S., Choi, C. H. and Lee, C. S., "Regioselective Surface Modification of PDMS Microfluidic Device for the Generation of Monodisperse Double Emulsions," Macromol. Res., 20(4), 422-428(2012). https://doi.org/10.1007/s13233-012-0048-8
- Shim, G., Yeom, S. J., Jeong, S. G., Kang, K. K. and Lee, C. S., "Fabrication of Anisotropic Hexagram Particles by using the Micromolding Technique and Selective Localization of Patch," Clean Technol, 24(2), 105-111(2018). https://doi.org/10.7464/KSCT.2018.24.2.105
- Doytcheva, M., Dotcheva, D., Stamenova, R. and Tsvetanov, C., "UV-Initiated Crosslinking of Poly(ethylene oxide) with Pentaerythritol Triacrylate in Solid State," Macromol. Mater. Eng., 286, 30-33(2001). https://doi.org/10.1002/1439-2054(20010101)286:1<30::AID-MAME30>3.0.CO;2-6
- Azzam, W. R., "Reduction of the Shrinkage-Swelling Potential with Polymer Nanocomposite Stabilization", J. Appl. Polym. Sci., 123, 299-306(2012). https://doi.org/10.1002/app.33642
- https://www.thermofisher.com/kr/ko/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html.