DOI QR코드

DOI QR Code

Synthesis, Photophysical and Aggregation Properties of Novel Phenanthrene and Pyrene Substituted Phthalocyanines

  • Kumar, Rangaraju Satish (Department of Advanced Organic Materials Engineering, Chungnam National University) ;
  • Son, Young-A (Department of Advanced Organic Materials Engineering, Chungnam National University)
  • Received : 2018.09.28
  • Accepted : 2018.10.12
  • Published : 2018.12.01

Abstract

We have explained the synthesis of novel phenanthrene and pyrene substituted phthalocyanines (PC-PHE and PC-PYR) and fully confirmed the structures by its spectral, photo physical and elemental analysis. For these phthalocyanines we checked the UV-Visible absorbance in PGMEA and chloroform and transmittance checked in PGMEA. The transmittance results suggested that these phthalocyanines are showing more than 90% transmittance at the 450-550 nm region. These synthesized molecules are nicely soluble in almost all industrial solvents. We checked the aggregation property of these phthalocyanines in PGMEA, and the results suggested no any aggregation for these molecules in PGMEA. The thermogravimetric analysis results concluded that PC-PHE and PC-PYR had high thermal stability. All studies explain that these new phthalocyanines are more suitable for LCD green color filter application.

Keywords

HHGHHL_2018_v56n6_792_f0001.png 이미지

Fig. 1. Structures of new phenanthrene and pyrene substituted phthalocyanines.

HHGHHL_2018_v56n6_792_f0002.png 이미지

Scheme 1. Synthesis of phenanthrene substituted phthalocyanine.

HHGHHL_2018_v56n6_792_f0003.png 이미지

Scheme 2. Synthesis of pyrene substituted phthalocyanine.

HHGHHL_2018_v56n6_792_f0004.png 이미지

Fig. 2. UV-Visible absorption spectra of PC-PHE and PC-PYR in PGMEA (1 × 10-5 M).

HHGHHL_2018_v56n6_792_f0005.png 이미지

Fig. 3. UV-Visible absorption spectra of PC-PHE and PC-PYR in CHCl3 (1 × 10-5 M).

HHGHHL_2018_v56n6_792_f0006.png 이미지

Fig. 4. Transmittance spectra of PC-PHE and PC-PYR in PGMEA (1 × 10-5 M).

HHGHHL_2018_v56n6_792_f0007.png 이미지

Fig. 5. Aggregation behavior of PC-PHE in PGMEA at different concentrations (1 × 10-6 M to 1 × 10-5 M).

HHGHHL_2018_v56n6_792_f0008.png 이미지

Fig. 6. Aggregation behavior of PC-PYR in PGMEA at different concentrations (1 × 10-6 M to 1 × 10-5 M).

HHGHHL_2018_v56n6_792_f0009.png 이미지

Fig. 7. TGA spectra of PC-PHE and PC-PYR.

References

  1. Leznoff, C. C. and Lever, A. B. P., "Phthalocyanines: Properties and Applications," VCH, New York, NY, USA, 1993.
  2. Zagal, J. H., "Metallophthalocyanines as Catalysts in Electrochemical Reactions," Coord. Chem. Rev., 119, 89-136(1992). https://doi.org/10.1016/0010-8545(92)80031-L
  3. Rosa, M. C. D. and Crutchley, R. J., "Photosensitized Singlet Oxygen and its Applications," Coord. Chem. Rev., 233, 351-371(2002).
  4. Ng, A. C., Li, X. Y. and Ng, D. K., "Synthesis and Photophysical Properties of Nonaggregated Phthalocyanines Bearing Dendritic Substituents," Macromolecules 32, 5292-5298(1999). https://doi.org/10.1021/ma990367s
  5. Zhu, B., Zhang, X., Han, M., Deng, P. and Li, Q., "Novel Planar Binuclear Zinc Phthalocyanine Sensitizer for Dye-sensitized Solar Cells: Synthesis and Spectral, Electrochemical, and Photovoltaic Properties," J. Mol. Struct., 1079, 61-66(2015). https://doi.org/10.1016/j.molstruc.2014.09.037
  6. Waltera, M. G., Rudineb, A. B. and Wamser, C. C., "Porphyrins and Phthalocyanines in Solar Photovoltaic Cells," J. Porphyrins Phthalocyanines, 14, 759-792(2010). https://doi.org/10.1142/S1088424610002689
  7. Gursel, Y. H., Senkal, B. F., Kandaz, M. and Yakuphanoglu F., "Synthesis and Liquid Crystal Properties of Phthalocyanine Bearing a Star Polytetrahydrofuran Moiety," Polyhedron, 28, 1490-1496(2009). https://doi.org/10.1016/j.poly.2009.02.038
  8. Karacaa, H., Çayegil, B. and Sezer, S., "Synthesis Characterization and Metal Sensing Applications of Novel Chalcone Substituted Phthalocyanines," Synth. Met., 215, 134-141(2016). https://doi.org/10.1016/j.synthmet.2016.02.007
  9. Basova, T. V., Mikhaleva, N. S., Hassan, A. K. and Kiselev V. G., "Thin Films of Fluorinated 3d-Metal Phthalocyanines as Chemical Sensors of Ammonia: An Optical Spectroscopy Study," Sens. Actuators B, 227, 634-642(2016). https://doi.org/10.1016/j.snb.2015.12.079
  10. Lin, D., Wang, Y., Zhang, Q., Zhou, J., Zhou, L. and Wei S., "The Substituted Amino Group Type Dependent Sensitivity Enhancing of Cationic Phthalocyanine Derivatives for Photodynamic Activity," J. Photochem. Photobiol. A Chem., 315, 107-120(2016). https://doi.org/10.1016/j.jphotochem.2015.09.017
  11. Zorlu, Y., Dumoulin, F., Bouchu, D., Ahsen, V. and Lafont, D., "Monoglycoconjugated Water-Soluble Phthalocyanines. Design and Synthesis of Potential Selectively Targeting PDT Photosensitisers," Tetrahedron Lett., 51, 6615-6618(2010). https://doi.org/10.1016/j.tetlet.2010.10.044
  12. Spadavecchia, J., Ciccarella, G., Siciliano, P., Capone, S. and Rella R., "Spin-coated Thin Films of Metal Porphyrin-Phthalocyanine Blend for an Optochemical Sensor of Alcohol Vapours," Sens. Actuators B, 100, 88-93(2004). https://doi.org/10.1016/j.snb.2003.12.027
  13. Elemans, J. A. A. W., Hameren, W. R. V., Nolte, R. J. M. and Rowan, A. E. "Molecular Materials by Self-Assembly of Porphyrins, Phthalocyanine, and Perylenes," Adv. Mater., 18, 1251-1266(2006). https://doi.org/10.1002/adma.200502498
  14. Cook, P. and Chambrier, H., "The Porphyrine Handbook," edited by Kadish, K. M., Guilard, R. and Smith, K. M., Academic Press, Amsterdam (2003), Vol. 19, pp. 105-150.
  15. Forrest, S. R., "Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques," Chem. Rev., 97, 1793-1896(1997). https://doi.org/10.1021/cr941014o
  16. Dieter, W., Tsaryova, O., Semioshkin, A., Gabel, D. and Suvorova, O., "Synthesis and Photochemical Properties of Phthalocyanine Zinc(II) Complexes Containing o-Carborane Units," J. Organomet. Chem., 747, 98-105(2013). https://doi.org/10.1016/j.jorganchem.2013.03.020
  17. Guzel, E., Atsay, A., Nalbantoglu, N. S., Dogan, L., Gul, A. and Kocak, M. B. "Synthesis, Characterization and Photodynamic Activity of a New Amphiphilic Zinc Phthalocyanine," Dyes Pigm., 97, 238-243(2013). https://doi.org/10.1016/j.dyepig.2012.12.027
  18. Cook, M. J., Dunn, A. J., Howe, S. D., Thomson, A. J. and Harrison, K. J. "Octa-alkoxy Phthalocyanine and Naphthalocyanine Derivatives: Dyes with Q-band Absorption in the Far Red or Near Infrared," J. Chem. Soc. Perkin Trans., 1, 2453-2458(1988).
  19. Makhseed, S., Tuhl, A., Samuel, J., Zimcik, P., Awadi, N. A. and Novakova, V., "New Highly Soluble Phenoxy-Substituted Phthalocyanine and Azaphthalocyanine Derivatives: Synthesis, Photochemical and Photophysical Studies and a Typical Aggregation Behavior," Dyes Pigm., 95, 351-357(2012). https://doi.org/10.1016/j.dyepig.2012.03.023
  20. Leznoff, C. C. and Lever, A. B. P., Phthalocyanines: Properties and Applications, vol. 1. VCH: NewYork; 1996, vol. 4.
  21. Ragoussi, M.-E., Ince, M. and Torres, T. "Recent Advances in Phthalocyanine-Based Sensitizers for Dye-Sensitized Solar Cells," Eur. J. Org. Chem., 29, 6475-6489(2013).
  22. Jeong, J., Kumar, R. S., Mergu, N. and Son, Y.-A., "Photophysical, Electrochemical, Thermal and Aggregation Properties of New Metal Phthalocyanines," J. Mol. Struct., 1147, 469-479(2017). https://doi.org/10.1016/j.molstruc.2017.06.125
  23. Ku, K.-S., Kumar, R. S. and Son, Y.A., "Synthesis, Spectral and Photophysical Properties of Anthracene Substituted Phthalocyanines; A Study as Polyurethane Electrospun Nanofibers," J. Nanosci. Nanotechnol., 18, 1716-1722(2017).
  24. Jeong, J., Kumar, R. S., Kim, I. J. and Son, Y.-A., "Synthesis, Characterization of Symmetrical and Unsymmetrical Naphthoxy Substituted Metallophthalocyanines," Mol. Cryst. Liq. Cryst., 644, 249-256(2017). https://doi.org/10.1080/15421406.2016.1277498
  25. Garcia-Iglesias, M., Yum, J.-H., Humphry-Baker, R., Zakeeruddin, S. M., Zechy, P., Vazquez, P., Palomares, E., Gratzel, M., Nazeeruddin, M. K. and Torres, T., "Effect of Anchoring Groups in Zinc Phthalocyanine on the Dye-Sensitized Solar Cell Performance and Stability," Chem. Sci., 2, 1145-1150(2011). https://doi.org/10.1039/c0sc00602e
  26. Muthukumar, P., Kim, H.-S., Ku, K.-S., Park, J. H. and Son, Y.-A., "Synthesis, Characterization and Aggregation and Fluorescence properties of Novel Highly Soluble Zinc Phthalocyanines Bearing Tetrakis-4-(3-(piperidin-1-yl)phenoxy) with Tetra and Dodecachloro Substituents," Fibers Polym., 17, 553-559(2016). https://doi.org/10.1007/s12221-016-5812-5
  27. Durmus, M., Ayhan, M. M., Gurek, A. G. and Ahsen, V., "Synthesis, Characterization and Electrochemical Properties of Tetra 7-Oxy-3-Biphenylcoumarin Substituted Metal-Free, Zinc(II), Cobalt(II) and Indium(III) Phthalocyanines," Dyes Pigm., 133, 311-323(2016). https://doi.org/10.1016/j.dyepig.2016.06.002
  28. March, J., "Advanced Organic Chemistry, Reactions, Mechanisms and Structure," 3rd ed., Wiley, New York, pp. 853-933(1985).
  29. Giribabu, L., Vijay Kumar, C. H., Surendar, A., Reddy, V. G., Chandrasekharam, M. and Reddy P. Y., "Highly Efficient Microwave-Assisted Synthesis of Subphthalocyanines," Synth. Commun., 37, 4141-4147(2007). https://doi.org/10.1080/00397910701574775
  30. Hoon, Y., Chul, K. J., Gun, L. B., Sanghun, A., Pil, H. J., Hun, K. S., Choi, K. J. and Namgoong, J. W., "High Transmissional Green Dye for LCD And Synthetic Method Thereof," US20140114077A1 patent.
  31. Choi, J., Kim, S. H., Lee, W., Yoon, C. and Kim, J. P., "Synthesis and Characterization of Thermally Stable Dyes with Improved Optical Properties for Dye-Based LCD Color Filters," New J. Chem., 36, 812-818(2012). https://doi.org/10.1039/c2nj20938a
  32. Sytnyk, M., Glowacki, E. D., Yakunin, S., Voss, G., Scholfberger, W., Kriegner, D., Stangl, J., Trotta, R., Gollner, C., Tollabimazraehno, S., Romanazzi, G., Bozkurt, Z., Havlicek, M., Serdar Sariciftci, N. and Heiss, W., "Hydrogen-Bonded Organic Semiconductor Micro- And Nanocrystals: From Colloidal Syntheses to (Opto-)Electronic Devices," J. Am. Chem. Soc., 136, 16522-16532(2014). https://doi.org/10.1021/ja5073965
  33. Durmus, M. and Nyokong, T., "Synthesis and Solvent Effects on the Electronic Absorption and Fluorescence Spectral Properties of Substituted Zinc Phthalocyanines, " Polyhedron, 26, 2767-2776 (2007). https://doi.org/10.1016/j.poly.2007.01.018
  34. Delman, A. D., Kelly, J. J., Stein, A. A. and Simms, F. B., "Thermal Analysis, In: Proceedings of the International Conference," 2nd ed., 1 New York: Academic Press; p. 539(1969).