Fig. 1. Development strategy for volume expansion control of Si: (a) pulverization and distribution, (b) PC coating, (c) CNF growth, (d) 2nd PC coating, (e) secondary metal blending, (f) graphite blending.
Fig. 2. Mixture of Cu metals SEM image.
Fig. 3. Analysis of (Si/PC/CNF + graphite): (a)XRD pattern, (b)SEM image, (c)TEM image, (d)TEM mapping.
Fig. 4. Charge and discharge voltage profile of anode active material: (a) Si/PC/CNF/PC + Ag, (b) Si/PC/CNF/PC + Cu.
Fig. 5. Charging and discharging of Si/PC/CNF/PC + Cu anode material: (a) profile, (b) capacity.
Fig. 6. Cycle life characteristics of 15 wt% (Si/PC/CNF/PC + Cu 0.9 wt%) + 85 wt% (graphite) anode material: (a) capacity, (b) efficiency.
Fig. 7. Comparison of the initial discharge capacity between the graphite and the developed composite.
Table 1. Comparison of Si/PC/CNF/PC + Cu 0.9 wt%, Si/PC/CNF/PC and Si/PC/CNF characteristics
Table 2. Charge and discharge comparison of Si/PC/CNF + graphite anode material
Table 3. Characteristics comparison between 15 wt% (Si/PC/CNF/PC + Cu 0.9 wt%) + 85 wt% graphite and 15 wt% (Si/PC/CNF) + 85 wt% graphite
References
-
Ko, H. S., Choi, J. E. and Lee, J. D., "Electrochemical Characteristics of Lithium Ion Battery Anode Materials of Graphite/
$SiO_2$ ," Appl. Chem. Eng., 25(6), 592-597(2014). https://doi.org/10.14478/ACE.2014.1094 - Yu, J., Zhan, H. H., Wang, Y. H., Zhang, Z. L., Chen, H., Li, H., Zhong, Z. Y., and Su, F. B., "Graphite Microspheres Decorated with Si Particles Derived from Waste Solid of Organosilane Industry as High Capacity Anodes for Li-ion Batteries," J. Power Sources, 228, 112-119(2013). https://doi.org/10.1016/j.jpowsour.2012.11.083
- Zhu, X. Y., Chen, H., Wang, Y. H., Xia, L. H., Tan, Q. Q., Li, H., Zhong, Z. Y., Su, F. B. and Zhao, X. S., "Growth of Silicon/carbon Microrods on Graphite Microspheres as Improved Anodes for Lithium-ion Batteries," J. Mater. Chem., 1(14), 4483-4489 (2013). https://doi.org/10.1039/c3ta01474f
- Jang, S. M., Miyawaki, J., Tsuji, M., Mochida, I. and Yoon, S. H., "The Preparation of a Novel Si-CNF Composite as an Effective Anodic Material for Lithium-ion Batteries," Carbon, 47(15), 3383- 3391(2009). https://doi.org/10.1016/j.carbon.2009.07.018
- Yinjie, C., Qingwei, Q., Richard, D. S. and Jianyu, L., "Effect of Particle Size and Surface Treatment on Si/Graphene Nanocomposite Lithium-Ion Battery Anodes," Electrochim. Acta, 251, 690-698(2017). https://doi.org/10.1016/j.electacta.2017.08.139
- Yamauchi, Y., Hino, T., Ohzeki, K., Kubota, Y. and Deyama, S., "Gas Desorption Behavior of Graphite Anodes Used for Lithium Ion Secondary Batteries," Carbon, 43(6), 1334-1336(2005). https://doi.org/10.1016/j.carbon.2005.01.016
- Li, S. Q., Chi, Y., Li, R. D., Yan, J. H. and Cen, K. F., "Axial Transport and Residence Time of MSW in Rotary Kil ns: Part II. Theoretical and Optimal Analyses," Powder Technol., 126(3), 228-240(2002). https://doi.org/10.1016/S0032-5910(02)00015-3
- Lee, H. K. and Choi, S. M., "Lifter Design for Enhanced Heat Transfer in a Rotary Kiln Reactor," J. Mech. Sci. Technol., 27(10), 3191-3197(2013). https://doi.org/10.1007/s12206-013-0841-0
- Yoshio, M., Tsumura, T. and Dimov, N., "Silicon/graphite Composites as an Anode Material for Lithium Ion Batteries," J. Power Sources, 163(1), 215-218(2006). https://doi.org/10.1016/j.jpowsour.2005.12.078
- Ryu, J. H., Oh, E. Y. and Oh, S. M., "Charge/discharge Capacity of Nature Graphite Anode According to the Charge/discharge Rate in Lithium Secondary Batteries," J. Korean Electrochem. Soc., 7(1), 32-37(2004). https://doi.org/10.5229/JKES.2004.7.1.032
- Dimov, N., Kugino, S. and Yoshio, M., "Mixed Silicon-graphite Composites as Anode Material for Lithium Ion Batteries: Influence of Preparation Conditions on the Properties of the Material," J. Power Sources, 136(1), 108-114(2004). https://doi.org/10.1016/j.jpowsour.2004.05.012
- Larcher, D., Mudalige, C., George, A. E., Porter, V., Gharghouri, M. and Dahn, J. R., "Si-containing Disordered Carbons Prepared by Pyrolysis of Pitch/polysilane Blends: Effect of Oxygen and Sulfur," Solid State Ionics, 122(1-4), 71-83(1999). https://doi.org/10.1016/S0167-2738(98)00557-8
- Hanai, K., Liu, Y., Imanishi, N., Hirano, A., Matsumura, M., Ichikawa, T. and Takeda, Y., "Electrochemical Studies of the Si-based Composites with Large Capacity and Good Cycling Stability as Anode Materials for Rechargeable Lithium Ion Batteries," J. Power Sources, 146(1-2), 156-160(2005). https://doi.org/10.1016/j.jpowsour.2005.03.108
- Farooq, U., Choi, J. H., Pervez, S. A., Yaqub, A., Kim, D. H., Lee, Y. J., Saleem, M. and Doh, C. H., "Effect of Binder and Composition Ratio on Electrochemical Performance of Silicon/ graphite Composite Battery Electrode," Mater. Lett., 136, 254-257 (2014). https://doi.org/10.1016/j.matlet.2014.08.059
- Yim, T. E., Choi, S. J., Jo, Y. N., Kim, T. H., Kim, K. J., Jeong, G. J. and Kim, Y. J., "Effect of Binder Properties on Electrochemical Performance for Silicon-graphite Anode: Method and Application of Binder Screening," Electrochim. Acta, 136, 112-120(2014). https://doi.org/10.1016/j.electacta.2014.05.062
- Kim, J. H., Sohn, H. J., Kim, H. S., Jeong, G. J. and Choi, W. N., "Enhanced Cycle Performance of SiO-C Composite Anode for Lithium-ion Batteries," J. Power Sources, 170(2), 456-459(2007). https://doi.org/10.1016/j.jpowsour.2007.03.081
- Liua, Y., Hanai, K., Yang, J., Imanishi, N., Hirano, A. and Takeda, Y., "Morphology-stable Silicon-based Composite for Li-intercalation," Solid State Ionics, 168(1-2), 61-68(2004). https://doi.org/10.1016/j.ssi.2004.01.031
- Naji, A., Willmann, P. and Billaud, D., "Electrochemical Intercalation of Lithium into Graphite: Influence of the Solvent Composition and of the Nature of the Lithium Salt," Carbon, 36(9), 1347-1352(1998). https://doi.org/10.1016/S0008-6223(98)00119-5
- Ko, M. S., Chae, S. J., Ma, J. Y., Kim, N. H., Lee, H. W., Cui, Y. and Cho, J. P., "Scalable Synthesis of Silicon-nanolayer-embedded Graphite for High-energy Lithium-ion Batteries," Nature Energy, 1, 16113(2016). https://doi.org/10.1038/nenergy.2016.113