DOI QR코드

DOI QR Code

Electrochemical Characteristics of Si/PC/CNF/PC Composite for Anode Material of Lithium ion Battery

이차전지 음극활물질 Si/PC/CNF/PC 복합 소재의 전기화학적 특성

  • Jeon, Do-Man (EG CORPORATION) ;
  • Na, Byung-Ki (Department of Chemical Engineering, Chungbuk National University) ;
  • Rhee, Young-Woo (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • Received : 2018.09.28
  • Accepted : 2018.10.22
  • Published : 2018.12.01

Abstract

In order to use Si as an anode material for lithium-ion battery, the particle size was controlled to less than $0.5{\mu}m$ and carbon was coated on the surface with the thickness less than 10 nm. The carbon fiber was grown on the Si surface with 50~150 wt%, and the carbon coating was carried out once again. The Si composite material was mixed with dissimilar metals to increase the conductivity, and graphite was mixed to improve cyclic life characteristics. The physical and electrochemical characteristics of composite materials were measured with XRD, SEM, TEM and coin cell. The discharge capacity of Si/PC/CNF/PC was lower than that of Si/PC (Pyrolytic Carbon)/CNF (Carbon Nano Fiber). However, the cyclic life of Si/PC/CNF/PC was higher. Initial discharge capacity of 1512 mA h g-1 at 0.2 C rate and initial efficiency of 78% were shown. It also showed a capacity retention of 94% in 10 cycles.

Si을 리튬이온전지 음극활물질로 사용하기 위해 입도를 $0.5{\mu}m$ 보다 작은 크기로 제어하였고 표면에 탄소를 약 10 nm 두께로 코팅하였다. 그 위에 탄소섬유를 50~150 wt% 양으로 성장시키고 다시 한 번 탄소코팅을 진행하였다. 이렇게 만들어진 Si 합성물질은 전기전도성을 높이기 위한 공정으로 이종 금속을 혼합하였으며 수명 특성을 개선하기 위해 흑연과 복합화하였다. 실험 변수에 따른 재료들의 물리화학적 특성을 XRD, SEM 및 TEM을 사용하여 측정하였고 코인셀을 제조하여 전기화학적 특성을 평가하였다. Si/PC (Pyrolytic Carbon)/CNF (Carbon Nano Fiber)보다 Si/PC/CNF/PC가 전체적으로 Si 함량이 줄어 방전용량은 상대적으로 낮게 나타났지만 전지평가에서 중요한 수명특성에서는 좋은 결과를 보여주었다. 0.2 C rate에서 $1512mA\;h\;g^{-1}$의 초기 방전 용량과 78%의 초기 효율을 나타내었고 10 싸이클에서 94%의 용량 보존율을 보여주었다.

Keywords

HHGHHL_2018_v56n6_798_f0001.png 이미지

Fig. 1. Development strategy for volume expansion control of Si: (a) pulverization and distribution, (b) PC coating, (c) CNF growth, (d) 2nd PC coating, (e) secondary metal blending, (f) graphite blending.

HHGHHL_2018_v56n6_798_f0002.png 이미지

Fig. 2. Mixture of Cu metals SEM image.

HHGHHL_2018_v56n6_798_f0003.png 이미지

Fig. 3. Analysis of (Si/PC/CNF + graphite): (a)XRD pattern, (b)SEM image, (c)TEM image, (d)TEM mapping.

HHGHHL_2018_v56n6_798_f0004.png 이미지

Fig. 4. Charge and discharge voltage profile of anode active material: (a) Si/PC/CNF/PC + Ag, (b) Si/PC/CNF/PC + Cu.

HHGHHL_2018_v56n6_798_f0005.png 이미지

Fig. 5. Charging and discharging of Si/PC/CNF/PC + Cu anode material: (a) profile, (b) capacity.

HHGHHL_2018_v56n6_798_f0006.png 이미지

Fig. 6. Cycle life characteristics of 15 wt% (Si/PC/CNF/PC + Cu 0.9 wt%) + 85 wt% (graphite) anode material: (a) capacity, (b) efficiency.

HHGHHL_2018_v56n6_798_f0007.png 이미지

Fig. 7. Comparison of the initial discharge capacity between the graphite and the developed composite.

Table 1. Comparison of Si/PC/CNF/PC + Cu 0.9 wt%, Si/PC/CNF/PC and Si/PC/CNF characteristics

HHGHHL_2018_v56n6_798_t0001.png 이미지

Table 2. Charge and discharge comparison of Si/PC/CNF + graphite anode material

HHGHHL_2018_v56n6_798_t0002.png 이미지

Table 3. Characteristics comparison between 15 wt% (Si/PC/CNF/PC + Cu 0.9 wt%) + 85 wt% graphite and 15 wt% (Si/PC/CNF) + 85 wt% graphite

HHGHHL_2018_v56n6_798_t0003.png 이미지

References

  1. Ko, H. S., Choi, J. E. and Lee, J. D., "Electrochemical Characteristics of Lithium Ion Battery Anode Materials of Graphite/$SiO_2$," Appl. Chem. Eng., 25(6), 592-597(2014). https://doi.org/10.14478/ACE.2014.1094
  2. Yu, J., Zhan, H. H., Wang, Y. H., Zhang, Z. L., Chen, H., Li, H., Zhong, Z. Y., and Su, F. B., "Graphite Microspheres Decorated with Si Particles Derived from Waste Solid of Organosilane Industry as High Capacity Anodes for Li-ion Batteries," J. Power Sources, 228, 112-119(2013). https://doi.org/10.1016/j.jpowsour.2012.11.083
  3. Zhu, X. Y., Chen, H., Wang, Y. H., Xia, L. H., Tan, Q. Q., Li, H., Zhong, Z. Y., Su, F. B. and Zhao, X. S., "Growth of Silicon/carbon Microrods on Graphite Microspheres as Improved Anodes for Lithium-ion Batteries," J. Mater. Chem., 1(14), 4483-4489 (2013). https://doi.org/10.1039/c3ta01474f
  4. Jang, S. M., Miyawaki, J., Tsuji, M., Mochida, I. and Yoon, S. H., "The Preparation of a Novel Si-CNF Composite as an Effective Anodic Material for Lithium-ion Batteries," Carbon, 47(15), 3383- 3391(2009). https://doi.org/10.1016/j.carbon.2009.07.018
  5. Yinjie, C., Qingwei, Q., Richard, D. S. and Jianyu, L., "Effect of Particle Size and Surface Treatment on Si/Graphene Nanocomposite Lithium-Ion Battery Anodes," Electrochim. Acta, 251, 690-698(2017). https://doi.org/10.1016/j.electacta.2017.08.139
  6. Yamauchi, Y., Hino, T., Ohzeki, K., Kubota, Y. and Deyama, S., "Gas Desorption Behavior of Graphite Anodes Used for Lithium Ion Secondary Batteries," Carbon, 43(6), 1334-1336(2005). https://doi.org/10.1016/j.carbon.2005.01.016
  7. Li, S. Q., Chi, Y., Li, R. D., Yan, J. H. and Cen, K. F., "Axial Transport and Residence Time of MSW in Rotary Kil ns: Part II. Theoretical and Optimal Analyses," Powder Technol., 126(3), 228-240(2002). https://doi.org/10.1016/S0032-5910(02)00015-3
  8. Lee, H. K. and Choi, S. M., "Lifter Design for Enhanced Heat Transfer in a Rotary Kiln Reactor," J. Mech. Sci. Technol., 27(10), 3191-3197(2013). https://doi.org/10.1007/s12206-013-0841-0
  9. Yoshio, M., Tsumura, T. and Dimov, N., "Silicon/graphite Composites as an Anode Material for Lithium Ion Batteries," J. Power Sources, 163(1), 215-218(2006). https://doi.org/10.1016/j.jpowsour.2005.12.078
  10. Ryu, J. H., Oh, E. Y. and Oh, S. M., "Charge/discharge Capacity of Nature Graphite Anode According to the Charge/discharge Rate in Lithium Secondary Batteries," J. Korean Electrochem. Soc., 7(1), 32-37(2004). https://doi.org/10.5229/JKES.2004.7.1.032
  11. Dimov, N., Kugino, S. and Yoshio, M., "Mixed Silicon-graphite Composites as Anode Material for Lithium Ion Batteries: Influence of Preparation Conditions on the Properties of the Material," J. Power Sources, 136(1), 108-114(2004). https://doi.org/10.1016/j.jpowsour.2004.05.012
  12. Larcher, D., Mudalige, C., George, A. E., Porter, V., Gharghouri, M. and Dahn, J. R., "Si-containing Disordered Carbons Prepared by Pyrolysis of Pitch/polysilane Blends: Effect of Oxygen and Sulfur," Solid State Ionics, 122(1-4), 71-83(1999). https://doi.org/10.1016/S0167-2738(98)00557-8
  13. Hanai, K., Liu, Y., Imanishi, N., Hirano, A., Matsumura, M., Ichikawa, T. and Takeda, Y., "Electrochemical Studies of the Si-based Composites with Large Capacity and Good Cycling Stability as Anode Materials for Rechargeable Lithium Ion Batteries," J. Power Sources, 146(1-2), 156-160(2005). https://doi.org/10.1016/j.jpowsour.2005.03.108
  14. Farooq, U., Choi, J. H., Pervez, S. A., Yaqub, A., Kim, D. H., Lee, Y. J., Saleem, M. and Doh, C. H., "Effect of Binder and Composition Ratio on Electrochemical Performance of Silicon/ graphite Composite Battery Electrode," Mater. Lett., 136, 254-257 (2014). https://doi.org/10.1016/j.matlet.2014.08.059
  15. Yim, T. E., Choi, S. J., Jo, Y. N., Kim, T. H., Kim, K. J., Jeong, G. J. and Kim, Y. J., "Effect of Binder Properties on Electrochemical Performance for Silicon-graphite Anode: Method and Application of Binder Screening," Electrochim. Acta, 136, 112-120(2014). https://doi.org/10.1016/j.electacta.2014.05.062
  16. Kim, J. H., Sohn, H. J., Kim, H. S., Jeong, G. J. and Choi, W. N., "Enhanced Cycle Performance of SiO-C Composite Anode for Lithium-ion Batteries," J. Power Sources, 170(2), 456-459(2007). https://doi.org/10.1016/j.jpowsour.2007.03.081
  17. Liua, Y., Hanai, K., Yang, J., Imanishi, N., Hirano, A. and Takeda, Y., "Morphology-stable Silicon-based Composite for Li-intercalation," Solid State Ionics, 168(1-2), 61-68(2004). https://doi.org/10.1016/j.ssi.2004.01.031
  18. Naji, A., Willmann, P. and Billaud, D., "Electrochemical Intercalation of Lithium into Graphite: Influence of the Solvent Composition and of the Nature of the Lithium Salt," Carbon, 36(9), 1347-1352(1998). https://doi.org/10.1016/S0008-6223(98)00119-5
  19. Ko, M. S., Chae, S. J., Ma, J. Y., Kim, N. H., Lee, H. W., Cui, Y. and Cho, J. P., "Scalable Synthesis of Silicon-nanolayer-embedded Graphite for High-energy Lithium-ion Batteries," Nature Energy, 1, 16113(2016). https://doi.org/10.1038/nenergy.2016.113