Fig. 1. XRD pattern of UiO-66 prepared with various time under identical synthesis conditions (Temperature: 130 ℃, HAce: 0 ml).
Fig. 2. XRD pattern of UiO-66 prepared with various temperatures under identical synthesis conditions (Time: 12 h, HAce: 0 ml).
Fig. 3. XRD pattern of UiO-66 prepared with various acetic acid amounts under identical synthesis conditions (Time: 12 h, Temperature: 130 ℃).
Fig. 4. SEM image of UiO-66 prepared for 12 h, at 130 ℃ and HAce 20 ml.
Fig. 5. Main effect plot for CO2 adsorption of UiO-66 synthesized under 3 different conditions.
Fig. 6. Interaction plot for CO2 adsorption of UiO-66 synthesized under 3 different conditions.
Fig. 7. Surface and contour plot of CO2 adsorption of UiO-66 synthesized with various time and temperatures.
Fig. 8. Surface and contour plot of CO2 adsorption of UiO-66 synthesized with various time and acetic acid amounts.
Fig. 9. Surface and contour plot of CO2 adsorption of UiO-66 synthesized with various temperatures and acetic acid amounts.
Table 1. Independent variables and their levels in the experiments design for CO2 adsorption by UiO-66
Table 2. BET surface area of UiO-66 particle prepared with various synthesis conditions
Table 3. Obtained values from experiment design for CO2 adsorption by UiO-66
References
- US DOE, A National Vision of America's Transition to a Hydrogen Economy - To 2030 and Beyond, Feb. 2002.
- Hassmann, K. and Kuhne, H.-M., "Primary Energy Sources for Hydrogen Production," Int. J. Hydrogen Energy, 18, 635-640(1993). https://doi.org/10.1016/0360-3199(93)90115-Q
- Martavaltzi, C. S. and Lemonidou, A. A., "Development of New CaO Based Sorbent Materials for CO2 Removal at High Temperature," Micropor. Mesopor. Mater., 110, 119-127(2008). https://doi.org/10.1016/j.micromeso.2007.10.006
-
Ochoa-Fernandez, E., Rusten, H. K., Jakobsen, H. A., Ronning, M., Holmen, A. and Chen, D., "Sorption Enhanced Hydrogen Production by Steam Methane Reforming Using
$Li_2ZrO_3$ as Sorbent: Sorption Kinetics and Reactor Simulation," Catal. Today, 106, 41-46(2005). https://doi.org/10.1016/j.cattod.2005.07.146 - Eddaoudi, M., Moler, D. B. and Li, H., "Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-organic Carboxylate Frameworks," Acc. Chem. Res., 34, 319-330(2001). https://doi.org/10.1021/ar000034b
- Tranchemontagne, D. J., Mendoza-Cortes, J. L., O'Keeffe, M. and Yaghi, O. M., "Secondary Building Units, Nets and Bonding in the Chemistry of Metal-organic Frameworks," Chem. Soc. Rev., 38, 1257-1283(2009). https://doi.org/10.1039/b817735j
- Long, J. R. and Yaghi, O. M., "The Pervasive Chemistry of Metalorganic Frameworks," Chem. Soc. Rev., 38, 1213-1214(2009). https://doi.org/10.1039/b903811f
- Rowsell, J. L. C., Spencer, E. C., Eckert, J., Howard, J. A. K. and Yaghi, O. M., "Gas Adsorption Sites in a Large-pore Metalorganic Framework," Science, 309, 1350-1354(2005). https://doi.org/10.1126/science.1113247
- Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S. and Lillerud, K. P., "A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability," J. Am. Chem. Soc., 130, 13850-13851(2008). https://doi.org/10.1021/ja8057953
- Hu, Z., Nalaparaju, A., Peng, Y., Jiang, J. and Zhao, D., "Modulated Hydrothermal Synthesis of UiO-66(Hf)-type Metal-organic Frameworks for Optimal Carbon Dioxide Separation," Inorg. Chem., 55, 1134-1141 (2016). https://doi.org/10.1021/acs.inorgchem.5b02312
- Smith, S. J., Ladewig, B. P., Hill, A. J., Lau, C. H. and Hill, M. R., "Post-synthetic Tiexchanged UiO-66 Metal-organic Frameworks that Deliver Exceptional gas Permeability in Mixed Matrix Membranes," Scientific reports 5 (2015).
- Roosta, M., Ghaedi, M., Daneshfar, A. and Sahraei, R., "Spectrochim. Acta, Part A, "Experimental Design Based Response Surface Methodology Optimization of Ultrasonic Assisted Adsorption of Safaranin O by Tin Sulfide Nanoparticle Loaded on Activated Carbon," 122, 223-231(2014). https://doi.org/10.1016/j.saa.2013.10.116
- Ghaedi, M., Barakat, E. A. Asfaram, A., Mirtamizdoust, B., Bazrafshan, A. A. and Hajati, S., RSC Adv., "Efficient adsorption of Europhtal Onto Activated Carbon Modified with Ligands (1E,2E)-1,2-bis(pyridin-4-ylmethylene)hydrazine (M) and (1E,2E)-1,2-bis(pyridin-3-ylmethylene)hydrazine (SCH-4); Response Surface Methodology," 5, 42376-42387(2015). https://doi.org/10.1039/C5RA03622D