DOI QR코드

DOI QR Code

Development of Adsorption Process with UiO-66 Particles for Hydrogen Purification Using Statistical Design of Experiment

통계학적 실험계획법을 이용한 수소정제용 UiO-66 흡착제 개발

  • Lee, Hyun Sik (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology) ;
  • Kim, Da Som (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology) ;
  • Park, Ji Won (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology) ;
  • Yoo, Kye Sang (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology)
  • 이현식 (서울과학기술대학교 화공생명공학과) ;
  • 김다솜 (서울과학기술대학교 화공생명공학과) ;
  • 박지원 (서울과학기술대학교 화공생명공학과) ;
  • 유계상 (서울과학기술대학교 화공생명공학과)
  • Received : 2018.08.31
  • Accepted : 2018.09.12
  • Published : 2018.12.01

Abstract

UiO-66 particles were synthesized under various synthesis conditions to study the adsorption of carbon dioxide for hydrogen purification. For the purpose, the design and analysis of experiments was performed using statistical design of experiment method. As the synthesis time, temperature and acetic acid amount increased, the crystallinity of UiO-66 particles increased. Especially, the amount of acetic acid was confirmed as an important factor in determining the crystallinity of the particles. The specific surface area of the particles measured by the nitrogen adsorption method also showed a similar tendency. Using the general factor analysis in the experimental design method, the main effects and interactions of major factors were analyzed. In addition, the carbon dioxide adsorption capacity was predicted using a nonlinear regression method. Then, the adsorption performance was shown through surface and contour maps for all ranges.

다양한 합성조건에서 UiO-66 입자를 합성하여 수소정제용 이산화탄소 흡착량에 대한 연구를 수행하였다. 이를 위하여 통계학적 실험계획법을 이용하여 실험계획을 세우고 도출된 결과를 이용하여 분석하였다. 합성시간, 온도 및 아세트산의 용량이 증가할 수록 UiO-66입자의 결정도가 증가하였다. 특히 아세트산의 용량이 입자의 결정도를 결정하는데 중요한 인자로 확인되었다. 질소흡착법으로 측정한 입자의 비표면적의 경우도 유사한 경향을 보였다. 실험계획법 중 일반요인분석을 이용하여 주요 인자에 대한 주효과도 및 교호작용을 분석하였다. 또한 비선형 회귀법을 이용하여 이산화탄소 흡착량을 예측하였고, 모든 범위에서 대하여 흡착성능을 표면도와 등고선도를 통해 제시하였다.

Keywords

HHGHHL_2018_v56n6_784_f0001.png 이미지

Fig. 1. XRD pattern of UiO-66 prepared with various time under identical synthesis conditions (Temperature: 130 ℃, HAce: 0 ml).

HHGHHL_2018_v56n6_784_f0002.png 이미지

Fig. 2. XRD pattern of UiO-66 prepared with various temperatures under identical synthesis conditions (Time: 12 h, HAce: 0 ml).

HHGHHL_2018_v56n6_784_f0003.png 이미지

Fig. 3. XRD pattern of UiO-66 prepared with various acetic acid amounts under identical synthesis conditions (Time: 12 h, Temperature: 130 ℃).

HHGHHL_2018_v56n6_784_f0004.png 이미지

Fig. 4. SEM image of UiO-66 prepared for 12 h, at 130 ℃ and HAce 20 ml.

HHGHHL_2018_v56n6_784_f0005.png 이미지

Fig. 5. Main effect plot for CO2 adsorption of UiO-66 synthesized under 3 different conditions.

HHGHHL_2018_v56n6_784_f0006.png 이미지

Fig. 6. Interaction plot for CO2 adsorption of UiO-66 synthesized under 3 different conditions.

HHGHHL_2018_v56n6_784_f0007.png 이미지

Fig. 7. Surface and contour plot of CO2 adsorption of UiO-66 synthesized with various time and temperatures.

HHGHHL_2018_v56n6_784_f0008.png 이미지

Fig. 8. Surface and contour plot of CO2 adsorption of UiO-66 synthesized with various time and acetic acid amounts.

HHGHHL_2018_v56n6_784_f0009.png 이미지

Fig. 9. Surface and contour plot of CO2 adsorption of UiO-66 synthesized with various temperatures and acetic acid amounts.

Table 1. Independent variables and their levels in the experiments design for CO2 adsorption by UiO-66

HHGHHL_2018_v56n6_784_t0001.png 이미지

Table 2. BET surface area of UiO-66 particle prepared with various synthesis conditions

HHGHHL_2018_v56n6_784_t0002.png 이미지

Table 3. Obtained values from experiment design for CO2 adsorption by UiO-66

HHGHHL_2018_v56n6_784_t0003.png 이미지

References

  1. US DOE, A National Vision of America's Transition to a Hydrogen Economy - To 2030 and Beyond, Feb. 2002.
  2. Hassmann, K. and Kuhne, H.-M., "Primary Energy Sources for Hydrogen Production," Int. J. Hydrogen Energy, 18, 635-640(1993). https://doi.org/10.1016/0360-3199(93)90115-Q
  3. Martavaltzi, C. S. and Lemonidou, A. A., "Development of New CaO Based Sorbent Materials for CO2 Removal at High Temperature," Micropor. Mesopor. Mater., 110, 119-127(2008). https://doi.org/10.1016/j.micromeso.2007.10.006
  4. Ochoa-Fernandez, E., Rusten, H. K., Jakobsen, H. A., Ronning, M., Holmen, A. and Chen, D., "Sorption Enhanced Hydrogen Production by Steam Methane Reforming Using $Li_2ZrO_3$ as Sorbent: Sorption Kinetics and Reactor Simulation," Catal. Today, 106, 41-46(2005). https://doi.org/10.1016/j.cattod.2005.07.146
  5. Eddaoudi, M., Moler, D. B. and Li, H., "Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-organic Carboxylate Frameworks," Acc. Chem. Res., 34, 319-330(2001). https://doi.org/10.1021/ar000034b
  6. Tranchemontagne, D. J., Mendoza-Cortes, J. L., O'Keeffe, M. and Yaghi, O. M., "Secondary Building Units, Nets and Bonding in the Chemistry of Metal-organic Frameworks," Chem. Soc. Rev., 38, 1257-1283(2009). https://doi.org/10.1039/b817735j
  7. Long, J. R. and Yaghi, O. M., "The Pervasive Chemistry of Metalorganic Frameworks," Chem. Soc. Rev., 38, 1213-1214(2009). https://doi.org/10.1039/b903811f
  8. Rowsell, J. L. C., Spencer, E. C., Eckert, J., Howard, J. A. K. and Yaghi, O. M., "Gas Adsorption Sites in a Large-pore Metalorganic Framework," Science, 309, 1350-1354(2005). https://doi.org/10.1126/science.1113247
  9. Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S. and Lillerud, K. P., "A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability," J. Am. Chem. Soc., 130, 13850-13851(2008). https://doi.org/10.1021/ja8057953
  10. Hu, Z., Nalaparaju, A., Peng, Y., Jiang, J. and Zhao, D., "Modulated Hydrothermal Synthesis of UiO-66(Hf)-type Metal-organic Frameworks for Optimal Carbon Dioxide Separation," Inorg. Chem., 55, 1134-1141 (2016). https://doi.org/10.1021/acs.inorgchem.5b02312
  11. Smith, S. J., Ladewig, B. P., Hill, A. J., Lau, C. H. and Hill, M. R., "Post-synthetic Tiexchanged UiO-66 Metal-organic Frameworks that Deliver Exceptional gas Permeability in Mixed Matrix Membranes," Scientific reports 5 (2015).
  12. Roosta, M., Ghaedi, M., Daneshfar, A. and Sahraei, R., "Spectrochim. Acta, Part A, "Experimental Design Based Response Surface Methodology Optimization of Ultrasonic Assisted Adsorption of Safaranin O by Tin Sulfide Nanoparticle Loaded on Activated Carbon," 122, 223-231(2014). https://doi.org/10.1016/j.saa.2013.10.116
  13. Ghaedi, M., Barakat, E. A. Asfaram, A., Mirtamizdoust, B., Bazrafshan, A. A. and Hajati, S., RSC Adv., "Efficient adsorption of Europhtal Onto Activated Carbon Modified with Ligands (1E,2E)-1,2-bis(pyridin-4-ylmethylene)hydrazine (M) and (1E,2E)-1,2-bis(pyridin-3-ylmethylene)hydrazine (SCH-4); Response Surface Methodology," 5, 42376-42387(2015). https://doi.org/10.1039/C5RA03622D