DOI QR코드

DOI QR Code

Bioethanol Production from Hydrodictyon reticulatum by Fed-Batch Fermentation Using Saccharomyces cerevisiae KCTC7017

  • Kim, Seul Ki (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology) ;
  • Nguyen, Cuong Mai (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology) ;
  • Ko, Eun Hye (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology) ;
  • Kim, In-Chul (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Seog (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Cheol (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
  • Received : 2016.07.28
  • Accepted : 2017.03.31
  • Published : 2017.06.28

Abstract

The aim of this study was to develop a potential process for bioethanol production from Hydrodictyon reticulatum (HR), a filamentous freshwater alga, using Saccharomyces cerevisiae (KCTC7017). From the sugar solutions prepared by the four different hydrolysis methods, bioethanol production ranged from 11.0 g/100 g dried material (acid hydrolysis) to 22.3 g/100 g dried material (enzymatic hydrolysis, EH). Bioethanol was fermented from a highly concentrated sugar solution obtained by a decompression-mediated (vacuum) enrichment method (VE). As the results, ethanol was more efficiently produced from HR when sugar solutions were concentrated by VE following EH (EH/VE). Using multiple feeding of the sugar solution prepared by EH/VE from HR, ethanol reached up to a concentration of 54.3 g/l, corresponding to 24.9 g/100 g dried material, which attained the economic level of product concentration (approximately 5%). The results indicate that by using HR, it is feasible to establish a bioethanol production process, which is effective for using microalgae as the raw material for ethanol production.

Keywords

References

  1. Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund M-F, Liden G, Zacchi G. 2006. Bio-ethanol - the fuel of tomorrow from the residues of today. Trends Biotechnol. 24: 549-556. https://doi.org/10.1016/j.tibtech.2006.10.004
  2. Choi SP, Nguyen MT, Sim SJ. 2010. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour. Technol. 101: 5330-5336. https://doi.org/10.1016/j.biortech.2010.02.026
  3. Rashid N, Rehman MSU, Han J-I. 2013. Recycling and reuse of spent microalgal biomass for sustainable biofuels. Biochem. Eng. J. 75: 101-107. https://doi.org/10.1016/j.bej.2013.04.001
  4. Li K, Liu S, Liu X. 2014. An overview of algae bioethanol production. Int. J. Energy Res. 38: 965-977. https://doi.org/10.1002/er.3164
  5. Kim KH, Choi IS, Kim HM, Wi SG, Bae H-J. 2014. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresour. Technol. 153: 47-54. https://doi.org/10.1016/j.biortech.2013.11.059
  6. Molaverdi M, Karimi K, Khanahmadi M, Goshadrou A. 2013. Enhanced sweet sorghum stalk to ethanol by fungus Mucor indicus using solid state fermentation followed by simultaneous saccharification and fermentation. Ind. Crops Prod. 49: 580-585. https://doi.org/10.1016/j.indcrop.2013.06.024
  7. Nguyen TH, Sunwoo IY, Kim S-K. 2016. Evaluation of galactose adapted yeasts for bioethanol fermentation from Kappaphycus alvarezii hydrolyzates. J. Microbiol. Biotechnol. 26: 1259-1266. https://doi.org/10.4014/jmb.1602.02019
  8. Wu C-H, Chien W-C, Chou H-K, Yang J, Lin H. 2014. Sulfuric acid hydrolysis and detoxification of red alga Pterocladiella capillacea for bioethanol fermentation with thermotolerant yeast Kluyveromyces marxianus. J. Microbiol. Biotechnol. 24: 1245-1253. https://doi.org/10.4014/jmb.1402.02038
  9. Choi S-J, Lee S-M, Lee J-H. 2012. Production of bio-ethanol from red algae by acid hydrolysis and enzyme treatment. Appl. Chem. Eng. 23: 279-283.
  10. Jard G, Dumas C, Delgenes J, Marfaing H, Sialve B, Steyer J, Carrere H. 2013. Effect of thermochemical pretreatment on the solubilization and anaerobic biodegradability of the red macroalga Palmaria palmata. Biochem. Eng. J. 79: 253-258. https://doi.org/10.1016/j.bej.2013.08.011
  11. Talukder MMR, Das P, Wu JC. 2012. Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid. Biochem. Eng. J. 68: 109-113. https://doi.org/10.1016/j.bej.2012.07.001
  12. Talukder MMR, Das P, Wu JC. 2014. Immobilization of microalgae on exogenous fungal mycelium: a promising separation method to harvest both marine and freshwater microalgae. Biochem. Eng. J. 91: 53-57. https://doi.org/10.1016/j.bej.2014.07.001
  13. Yanagisawa M, Nakamura K, Ariga O, Nakasaki K. 2011. Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem. 46: 2111-2116. https://doi.org/10.1016/j.procbio.2011.08.001
  14. Niizawa I, Heinrich JM, Irazoqui HA. 2014. Modeling of the influence of light quality on the growth of microalgae in a laboratory scale photo-bio-reactor irradiated by arrangements of blue and red LEDs. Biochem. Eng. J. 90: 214-223. https://doi.org/10.1016/j.bej.2014.05.002
  15. Kothari R, Pathak VV, Kumar V, Singh D. 2012. Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: an integrated approach for treatment and biofuel production. Bioresour. Technol. 116: 466-470. https://doi.org/10.1016/j.biortech.2012.03.121
  16. Borines MG, de Leon RL, Cuello JL. 2013. Bioethanol production from the macroalgae Sargassum spp. Bioresour. Technol. 138: 22-29. https://doi.org/10.1016/j.biortech.2013.03.108
  17. Khambhaty Y, Mody K, Gandhi MR, Thampy S, Maiti P, Brahmbhatt H, et al. 2012. Kappaphycus alvarezii as a source of bioethanol. Bioresour. Technol. 103: 180-185. https://doi.org/10.1016/j.biortech.2011.10.015
  18. Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC. 2013. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour. Technol. 135: 150-156. https://doi.org/10.1016/j.biortech.2012.10.120
  19. Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, et al. 2012. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol. 108: 83-88. https://doi.org/10.1016/j.biortech.2011.12.065
  20. Wells RD, Hall J, Clayton J, Champion P, Payne G, Hofstra D. 1999. The rise and fall of water net (Hydrodictyon reticulatum) in New Zealand. J. Aquat. Plant Manag. 37: 49-55.
  21. Kim N-J, Li H, Jung K, Chang HN, Lee PC. 2011. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour. Technol. 102: 7466-7469. https://doi.org/10.1016/j.biortech.2011.04.071
  22. Tan IS, Lam MK, Lee KT. 2013. Hydrolysis of macroalgae using heterogeneous catalyst for bioethanol production. Carbohydr. Polym. 94: 561-566. https://doi.org/10.1016/j.carbpol.2013.01.042
  23. Chou J-Y, Chang J-S, Wang W-L. 2006. Hydrodictyon reticulatum (Hydrodictyaceae, Chlorophyta), a new recorded genus and species of freshwater macroalga in Taiwan. Bio Formosa 41: 1-8.
  24. Chen C-Y, Zhao X-Q, Yen H-W, Ho S-H, Cheng C-L, Lee D-J, et al. 2013. Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 78: 1-10. https://doi.org/10.1016/j.bej.2013.03.006
  25. Metting F. 1996. Biodiversity and application of microalgae. J. Ind. Microbiol. 17: 477-489. https://doi.org/10.1007/BF01574779
  26. Yamada T, Sakaguchi K. 1982. Comparative studies on Chlorella cell walls: induction of protoplast formation. Arch. Microbiol. 132: 10-13. https://doi.org/10.1007/BF00690809
  27. Kim JH, Kim SK, Ko EH, Kim JC, Kim JS. 2013. Hydrolysis methods for the efficient manufacture of sugar solutions from the freshwater alga water-net (Hydrodictyon reticulatum). Korean J. Weed Sci. 2: 176-183.
  28. Nguyen CM, Kim J-S, Hwang HJ, Park MS, Choi GJ, Choi YH, et al. 2012. Production of L-lactic acid from a green microalga, Hydrodictyon reticulatum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli. Bioresour. Technol. 110: 552-559. https://doi.org/10.1016/j.biortech.2012.01.079
  29. Nguyen CM, Nguyen TN, Choi GJ, Choi YH, Jang KS, Park Y-J, et al. 2014. Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation. Bioresour. Technol. 151: 227-235. https://doi.org/10.1016/j.biortech.2013.10.039
  30. Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S. 2013. Bioethanol production using carbohydraterich microalgae biomass as feedstock. Bioresour. Technol. 135: 191-198. https://doi.org/10.1016/j.biortech.2012.10.015
  31. Schultz-Jensen N, Thygesen A, Leipold F, Thomsen ST, Roslander C, Lilholt H, et al. 2013. Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol - comparison of five pretreatment technologies. Bioresour. Technol. 140: 36-42. https://doi.org/10.1016/j.biortech.2013.04.060
  32. Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, et al. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24: 151-159. https://doi.org/10.1016/S0141-0229(98)00101-X
  33. Almeida JR, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Liden G. 2009. Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 82: 625.
  34. King FG, Hossain MA. 1982. The effect of temperature, pH, and initial glucose concentration on the kinetics of ethanol production by Zymomonas mobilis in batch fermentation. Biotech. Lett. 4: 531-536. https://doi.org/10.1007/BF00131577
  35. Lin Y, Zhang W, Li C, Sakakibara K, Tanaka S, Kong H. 2012. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy 47: 395-401. https://doi.org/10.1016/j.biombioe.2012.09.019
  36. Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Liden G, Gorwa-Grauslund MF. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82: 340-349. https://doi.org/10.1002/jctb.1676
  37. Pfeifer P, Bonn G, Bobleter O. 1984. Influence of biomass degradation products on the fermentation of glucose to ethanol by Saccharomyces carlsbergensis W34. Biotechnol. Lett. 6: 541-546. https://doi.org/10.1007/BF00139999
  38. Taherzadeh M, Gustafsson L, Niklasson C, Liden G. 2000. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 53: 701-708. https://doi.org/10.1007/s002530000328
  39. Ghaffour N, Missimer TM, Amy GL. 2013. Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309: 197-207. https://doi.org/10.1016/j.desal.2012.10.015
  40. Kim S-K, Hwang H-J, Kim J-D, Ko E-H, Choi J-S, Kim J-S. 2012. Usefulness of freshwater alga water-net (Hydrodictyon reticulatum) as resources for production of fermentable sugars. Korean J. Weed Sci. 32: 85-97. https://doi.org/10.5660/KJWS.2012.32.2.85
  41. John RP, Anisha G, Nampoothiri KM, Pandey A. 2011. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102: 186-193. https://doi.org/10.1016/j.biortech.2010.06.139
  42. Suutari M, Leskinen E, Fagerstedt K, Kuparinen J, Kuuppo P, Blomster J. 2015. Macroalgae in biofuel production. Phycol. Res. 63: 1-18. https://doi.org/10.1111/pre.12078
  43. Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14: 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  44. Taher H, Al-Zuhair S, Al-Marzouqi AH, Haik Y, Farid M. 2014. Enzymatic biodiesel production of microalgae lipids under supercritical carbon dioxide: process optimization and integration. Biochem. Eng. J. 90: 103-113. https://doi.org/10.1016/j.bej.2014.05.019
  45. Limayem A, Ricke SC. 2012. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38: 449-467. https://doi.org/10.1016/j.pecs.2012.03.002
  46. Scholz MJ, Riley MR, Cuello JL. 2013. Acid hydrolysis and fermentation of microalgal starches to ethanol by the yeast Saccharomyces cerevisiae. Biomass Bioenergy 48: 59-65. https://doi.org/10.1016/j.biombioe.2012.10.026
  47. Guo H, Daroch M, Liu L, Qiu G, Geng S, Wang G. 2013. Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta. Bioresour. Technol. 127: 422-428. https://doi.org/10.1016/j.biortech.2012.10.006
  48. Ho S-H, Li P-J, Liu C-C, Chang J-S. 2013. Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresour. Technol. 145: 142-149. https://doi.org/10.1016/j.biortech.2013.02.119
  49. Choi JA, Hwang JH, Dempsey BA, Abou-Shanab RA, Min B, Song H, et al. 2011. Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energ. Environ. Sci. 4: 3513-3520. https://doi.org/10.1039/c1ee01068a
  50. Harun R, Danquah MK. 2011. Influence of acid pretreatment on microalgal biomass for bioethanol production. Process Biochem. 46: 304-309. https://doi.org/10.1016/j.procbio.2010.08.027
  51. Nguyen MT, Choi SP, Lee J, Lee JH, Sim SJ. 2009. Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J. Microbiol. Biotechnol. 19: 161-166. https://doi.org/10.4014/jmb.0810.578

Cited by

  1. Advanced wastewater treatment using filamentous algae in raceway ponds with underwater light vol.41, pp.14, 2017, https://doi.org/10.1080/15567036.2018.1549142