Browse > Article
http://dx.doi.org/10.4014/jmb.1607.07066

Bioethanol Production from Hydrodictyon reticulatum by Fed-Batch Fermentation Using Saccharomyces cerevisiae KCTC7017  

Kim, Seul Ki (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Nguyen, Cuong Mai (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Ko, Eun Hye (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Kim, In-Chul (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Kim, Jin-Seog (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Kim, Jin-Cheol (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.6, 2017 , pp. 1112-1119 More about this Journal
Abstract
The aim of this study was to develop a potential process for bioethanol production from Hydrodictyon reticulatum (HR), a filamentous freshwater alga, using Saccharomyces cerevisiae (KCTC7017). From the sugar solutions prepared by the four different hydrolysis methods, bioethanol production ranged from 11.0 g/100 g dried material (acid hydrolysis) to 22.3 g/100 g dried material (enzymatic hydrolysis, EH). Bioethanol was fermented from a highly concentrated sugar solution obtained by a decompression-mediated (vacuum) enrichment method (VE). As the results, ethanol was more efficiently produced from HR when sugar solutions were concentrated by VE following EH (EH/VE). Using multiple feeding of the sugar solution prepared by EH/VE from HR, ethanol reached up to a concentration of 54.3 g/l, corresponding to 24.9 g/100 g dried material, which attained the economic level of product concentration (approximately 5%). The results indicate that by using HR, it is feasible to establish a bioethanol production process, which is effective for using microalgae as the raw material for ethanol production.
Keywords
Bioethanol; fermentation; freshwater algae; Hydrodictyon reticulatum; hydrolysis;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Nguyen CM, Kim J-S, Hwang HJ, Park MS, Choi GJ, Choi YH, et al. 2012. Production of L-lactic acid from a green microalga, Hydrodictyon reticulatum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli. Bioresour. Technol. 110: 552-559.   DOI
2 Nguyen CM, Nguyen TN, Choi GJ, Choi YH, Jang KS, Park Y-J, et al. 2014. Acid hydrolysis of Curcuma longa residue for ethanol and lactic acid fermentation. Bioresour. Technol. 151: 227-235.   DOI
3 Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S. 2013. Bioethanol production using carbohydraterich microalgae biomass as feedstock. Bioresour. Technol. 135: 191-198.   DOI
4 Schultz-Jensen N, Thygesen A, Leipold F, Thomsen ST, Roslander C, Lilholt H, et al. 2013. Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol - comparison of five pretreatment technologies. Bioresour. Technol. 140: 36-42.   DOI
5 Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, et al. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24: 151-159.   DOI
6 Almeida JR, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Liden G. 2009. Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 82: 625.
7 King FG, Hossain MA. 1982. The effect of temperature, pH, and initial glucose concentration on the kinetics of ethanol production by Zymomonas mobilis in batch fermentation. Biotech. Lett. 4: 531-536.   DOI
8 Lin Y, Zhang W, Li C, Sakakibara K, Tanaka S, Kong H. 2012. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy 47: 395-401.   DOI
9 Choi SP, Nguyen MT, Sim SJ. 2010. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour. Technol. 101: 5330-5336.   DOI
10 Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund M-F, Liden G, Zacchi G. 2006. Bio-ethanol - the fuel of tomorrow from the residues of today. Trends Biotechnol. 24: 549-556.   DOI
11 Rashid N, Rehman MSU, Han J-I. 2013. Recycling and reuse of spent microalgal biomass for sustainable biofuels. Biochem. Eng. J. 75: 101-107.   DOI
12 Li K, Liu S, Liu X. 2014. An overview of algae bioethanol production. Int. J. Energy Res. 38: 965-977.   DOI
13 Wu C-H, Chien W-C, Chou H-K, Yang J, Lin H. 2014. Sulfuric acid hydrolysis and detoxification of red alga Pterocladiella capillacea for bioethanol fermentation with thermotolerant yeast Kluyveromyces marxianus. J. Microbiol. Biotechnol. 24: 1245-1253.   DOI
14 Kim KH, Choi IS, Kim HM, Wi SG, Bae H-J. 2014. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Bioresour. Technol. 153: 47-54.   DOI
15 Molaverdi M, Karimi K, Khanahmadi M, Goshadrou A. 2013. Enhanced sweet sorghum stalk to ethanol by fungus Mucor indicus using solid state fermentation followed by simultaneous saccharification and fermentation. Ind. Crops Prod. 49: 580-585.   DOI
16 Nguyen TH, Sunwoo IY, Kim S-K. 2016. Evaluation of galactose adapted yeasts for bioethanol fermentation from Kappaphycus alvarezii hydrolyzates. J. Microbiol. Biotechnol. 26: 1259-1266.   DOI
17 Ghaffour N, Missimer TM, Amy GL. 2013. Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309: 197-207.   DOI
18 Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Liden G, Gorwa-Grauslund MF. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82: 340-349.   DOI
19 Pfeifer P, Bonn G, Bobleter O. 1984. Influence of biomass degradation products on the fermentation of glucose to ethanol by Saccharomyces carlsbergensis W34. Biotechnol. Lett. 6: 541-546.   DOI
20 Taherzadeh M, Gustafsson L, Niklasson C, Liden G. 2000. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 53: 701-708.   DOI
21 Kim S-K, Hwang H-J, Kim J-D, Ko E-H, Choi J-S, Kim J-S. 2012. Usefulness of freshwater alga water-net (Hydrodictyon reticulatum) as resources for production of fermentable sugars. Korean J. Weed Sci. 32: 85-97.   DOI
22 Taher H, Al-Zuhair S, Al-Marzouqi AH, Haik Y, Farid M. 2014. Enzymatic biodiesel production of microalgae lipids under supercritical carbon dioxide: process optimization and integration. Biochem. Eng. J. 90: 103-113.   DOI
23 John RP, Anisha G, Nampoothiri KM, Pandey A. 2011. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102: 186-193.   DOI
24 Suutari M, Leskinen E, Fagerstedt K, Kuparinen J, Kuuppo P, Blomster J. 2015. Macroalgae in biofuel production. Phycol. Res. 63: 1-18.   DOI
25 Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14: 217-232.   DOI
26 Niizawa I, Heinrich JM, Irazoqui HA. 2014. Modeling of the influence of light quality on the growth of microalgae in a laboratory scale photo-bio-reactor irradiated by arrangements of blue and red LEDs. Biochem. Eng. J. 90: 214-223.   DOI
27 Jard G, Dumas C, Delgenes J, Marfaing H, Sialve B, Steyer J, Carrere H. 2013. Effect of thermochemical pretreatment on the solubilization and anaerobic biodegradability of the red macroalga Palmaria palmata. Biochem. Eng. J. 79: 253-258.   DOI
28 Talukder MMR, Das P, Wu JC. 2012. Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid. Biochem. Eng. J. 68: 109-113.   DOI
29 Talukder MMR, Das P, Wu JC. 2014. Immobilization of microalgae on exogenous fungal mycelium: a promising separation method to harvest both marine and freshwater microalgae. Biochem. Eng. J. 91: 53-57.   DOI
30 Yanagisawa M, Nakamura K, Ariga O, Nakasaki K. 2011. Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides. Process Biochem. 46: 2111-2116.   DOI
31 Kothari R, Pathak VV, Kumar V, Singh D. 2012. Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: an integrated approach for treatment and biofuel production. Bioresour. Technol. 116: 466-470.   DOI
32 Borines MG, de Leon RL, Cuello JL. 2013. Bioethanol production from the macroalgae Sargassum spp. Bioresour. Technol. 138: 22-29.   DOI
33 Khambhaty Y, Mody K, Gandhi MR, Thampy S, Maiti P, Brahmbhatt H, et al. 2012. Kappaphycus alvarezii as a source of bioethanol. Bioresour. Technol. 103: 180-185.   DOI
34 Choi S-J, Lee S-M, Lee J-H. 2012. Production of bio-ethanol from red algae by acid hydrolysis and enzyme treatment. Appl. Chem. Eng. 23: 279-283.
35 Harun R, Danquah MK. 2011. Influence of acid pretreatment on microalgal biomass for bioethanol production. Process Biochem. 46: 304-309.   DOI
36 Limayem A, Ricke SC. 2012. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38: 449-467.   DOI
37 Scholz MJ, Riley MR, Cuello JL. 2013. Acid hydrolysis and fermentation of microalgal starches to ethanol by the yeast Saccharomyces cerevisiae. Biomass Bioenergy 48: 59-65.   DOI
38 Guo H, Daroch M, Liu L, Qiu G, Geng S, Wang G. 2013. Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta. Bioresour. Technol. 127: 422-428.   DOI
39 Ho S-H, Li P-J, Liu C-C, Chang J-S. 2013. Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresour. Technol. 145: 142-149.   DOI
40 Choi JA, Hwang JH, Dempsey BA, Abou-Shanab RA, Min B, Song H, et al. 2011. Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energ. Environ. Sci. 4: 3513-3520.   DOI
41 Nguyen MT, Choi SP, Lee J, Lee JH, Sim SJ. 2009. Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J. Microbiol. Biotechnol. 19: 161-166.   DOI
42 Chou J-Y, Chang J-S, Wang W-L. 2006. Hydrodictyon reticulatum (Hydrodictyaceae, Chlorophyta), a new recorded genus and species of freshwater macroalga in Taiwan. Bio Formosa 41: 1-8.
43 Kumar S, Gupta R, Kumar G, Sahoo D, Kuhad RC. 2013. Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour. Technol. 135: 150-156.   DOI
44 Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, et al. 2012. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol. 108: 83-88.   DOI
45 Wells RD, Hall J, Clayton J, Champion P, Payne G, Hofstra D. 1999. The rise and fall of water net (Hydrodictyon reticulatum) in New Zealand. J. Aquat. Plant Manag. 37: 49-55.
46 Kim N-J, Li H, Jung K, Chang HN, Lee PC. 2011. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour. Technol. 102: 7466-7469.   DOI
47 Tan IS, Lam MK, Lee KT. 2013. Hydrolysis of macroalgae using heterogeneous catalyst for bioethanol production. Carbohydr. Polym. 94: 561-566.   DOI
48 Chen C-Y, Zhao X-Q, Yen H-W, Ho S-H, Cheng C-L, Lee D-J, et al. 2013. Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 78: 1-10.   DOI
49 Metting F. 1996. Biodiversity and application of microalgae. J. Ind. Microbiol. 17: 477-489.   DOI
50 Yamada T, Sakaguchi K. 1982. Comparative studies on Chlorella cell walls: induction of protoplast formation. Arch. Microbiol. 132: 10-13.   DOI
51 Kim JH, Kim SK, Ko EH, Kim JC, Kim JS. 2013. Hydrolysis methods for the efficient manufacture of sugar solutions from the freshwater alga water-net (Hydrodictyon reticulatum). Korean J. Weed Sci. 2: 176-183.