References
- Cybulski A. 1994. Liquid-phase methanol synthesis: catalysts, mechanism, kinetics, chemical equilibria, vapor-liquid equilibria, and modeling - a review. Catal. Rev. 36: 557-615. https://doi.org/10.1080/01614949408013929
-
Arakawa H. 1998. Research and development on new synthetic routes for basic chemicals by catalytic hydrogenation of
$CO_2$ . Stud. Surf. Sci. Catal. 114: 19-30. - Marchionna M, Girolamo MD, Tagliabue L, Spangler MJ, Fleisch TH. 1998. A review of low-temperature methanol synthesis. Stud. Surf. Sci. Catal. 119: 539-544.
- Rozovskii AY, Lin GI. 1999. Catalytic synthesis of methanol. Kinet. Catal. 40: 773-794.
- Lange J-P. 2001. Methanol synthesis: a short review of technology improvements. Catal. Today 64: 3-8. https://doi.org/10.1016/S0920-5861(00)00503-4
- Stock AM, Robinson VL, Goudreau PN. 2000. Two-component signal transduction. Annu. Rev. Biochem. 69: 183-215. https://doi.org/10.1146/annurev.biochem.69.1.183
- West AH, Stock AM. 2001. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 26: 369-376. https://doi.org/10.1016/S0968-0004(01)01852-7
- Utsumi R, Brissette RE, Rampersaud A, Forst SA, Oosawa K, Inouye M. 1989. Activation of bacterial porin gene expression by a chimeric signal transducer in response to aspartate. Science 245: 1246-1249. https://doi.org/10.1126/science.2476847
- Weerasuriya S, Schneider BM, Manson MD. 1998. Chimeric chemoreceptors in Escherichia coli: signaling properties of Tar-Tap and Tap-Tar hybrids. J. Bacteriol. 180: 914-920.
- Levskaya A, Chevalier AA, Tabor JL, Simpson ZB, Lavery LA, Levy M, et al. 2005. Synthetic biology: engineering Escherichia coli to see light. Nature 438: 441-442. https://doi.org/10.1038/nature04405
- Ganesh I, Ravikumar S, Lee SH, Park SJ, Hong SH. 2013. Engineered fumarate sensing Escherichia coli based on the novel chimeric two-component system. J. Biotechnol. 168: 560-566. https://doi.org/10.1016/j.jbiotec.2013.09.003
- de Vries GE, Harms N, Maurer K, Papendrecht A, Stouthamer AH. 1988. Physiological regulation of Paracoccus denitrificans methanol dehydrogenase synthesis and activity. J. Bacteriol. 170: 3731-3737. https://doi.org/10.1128/jb.170.8.3731-3737.1988
- Harms N, Reijnders WNM, Anazawa H, van der Palan CJNM, van Spanning RJM, Oltmann LF, et al. 1993. Identification of a two-component regulatory system controlling methanol dehydrogenase synthesis in Paracoccus denitrificans. Mol. Microbiol. 8: 457-470. https://doi.org/10.1111/j.1365-2958.1993.tb01590.x
- Sambrook J, Russell DW. 2001. Molecular Cloning - A Laboratory Manual. Cold Spring Harbor. Laboratory Press, Cold Spring Harbor, NY. USA.
- Basle A, Rummel G, Storici P, Rosenbusch JP, Schirmer T. 2006. Crystal structure of osmoporin OmpC from E. coli at 2.0 A. J. Mol. Biol. 362: 933-942. https://doi.org/10.1016/j.jmb.2006.08.002
- Eswar N, Webb B, Marti-Renom MA, Madhusudhan MA, Eramian D, Shen MY, et al. 2007. Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci. Chapter 2: Unit 2.9.
- Bhattacharya D, Cheng J. 2013. 3Drefine: consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization. Proteins 81: 119-131. https://doi.org/10.1002/prot.24167
- Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, et al. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453-1462. https://doi.org/10.1126/science.277.5331.1453
- Eleaume H, Jabbouri S. 2004. Comparison of two standardisation methods in real-time quantitative RT-PCR to follow Staphylococcus aureus genes expression during in vitro growth. J. Microbiol. Methods 59: 363-370. https://doi.org/10.1016/j.mimet.2004.07.015
- Maruthamuthu M, Ganesh I, Ravikumar S, Hong SH. 2015. Evaluation of zraP gene expression characteristics and construction of a lead (Pb) sensing and removal system in a recombinant Escherichia coli. Biotechnol. Lett. 37: 659-664. https://doi.org/10.1007/s10529-014-1732-x
- Maruthamuthu MK, Selvamani V, Eom GT, Hong SH. 2017. Development of recA promoter based bisphenol-A sensing and adsorption system by recombinant Escherichia coli. Biochem. Eng. J. 122: 31-37. https://doi.org/10.1016/j.bej.2017.02.009
- Brosnan JT, Brosnan ME. 2006. The sulfur-containing amino acids: an overview. J. Nutr. 136: 1636S-1640S. https://doi.org/10.1093/jn/136.6.1636S
- Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Brusstar MJ, Haugen DJ, Gray Jr CL. 2008. Environmental and human health considerations for methanol as a transportation fuel. Presented at the 17th International Symposium on Alternative Fuels, Taiyuan, China, 14 October.
- Darmastuti Z, Bhattacharyya P, Andersson M, Kanungo J, Basu S, Kall P, et al. 2013. SiC-FET methanol sensors for process control and leakage detection. Sens. Actuators B Chem. 187: 553-562. https://doi.org/10.1016/j.snb.2013.04.019
Cited by
- Engineering Escherichia coli to Sense Non-native Environmental Stimuli: Synthetic Chimera Two-component Systems vol.24, pp.1, 2017, https://doi.org/10.1007/s12257-018-0252-2
- C1 Compound Biosensors: Design, Functional Study, and Applications vol.20, pp.9, 2019, https://doi.org/10.3390/ijms20092253
- Sensitive and Rapid Phenotyping of Microbes With Soluble Methane Monooxygenase Using a Droplet-Based Assay vol.8, pp.None, 2017, https://doi.org/10.3389/fbioe.2020.00358
- Engineering of Recombinant Escherichia coli Towards Methanol Sensing Using Methylobacterium extroquens Two-component Systems vol.48, pp.1, 2020, https://doi.org/10.4014/mbl.1908.08009
- Triggering the stringent response enhances synthetic methanol utilization in Escherichia coli vol.61, pp.None, 2017, https://doi.org/10.1016/j.ymben.2020.04.007
- Regulatory interventions improve the biosynthesis of limiting amino acids from methanol carbon to improve synthetic methylotrophy in Escherichia coli vol.118, pp.1, 2017, https://doi.org/10.1002/bit.27549
- Biosensor-Based Directed Evolution of Methanol Dehydrogenase from Lysinibacillus xylanilyticus vol.22, pp.3, 2021, https://doi.org/10.3390/ijms22031471