DOI QR코드

DOI QR Code

Construction of Methanol-Sensing Escherichia coli by the Introduction of a Paracoccus denitrificans MxaY-Based Chimeric Two-Component System

  • Received : 2016.11.29
  • Accepted : 2017.03.31
  • Published : 2017.06.28

Abstract

Escherichia coli was engineered to sense methanol by employing a chimeric two-component system (TCS) strategy. A chimeric MxaY/EnvZ (MxaYZ) TCS was constructed by fusing the Paracoccus denitrificans MxaY with the E. coli EnvZ. Real-time quantitative PCR analysis and GFP-based fluorescence analysis showed maximum transcription of ompC and the fluorescence at 0.01% of methanol, respectively. These results suggested that E. coli was successfully engineered to sense methanol by the introduction of chimeric MxaYZ. By using this strategy, various chimeric TCS-based bacterial biosensors can be constructed and used for the development of biochemical-producing recombinant microorganisms.

Keywords

References

  1. Cybulski A. 1994. Liquid-phase methanol synthesis: catalysts, mechanism, kinetics, chemical equilibria, vapor-liquid equilibria, and modeling - a review. Catal. Rev. 36: 557-615. https://doi.org/10.1080/01614949408013929
  2. Arakawa H. 1998. Research and development on new synthetic routes for basic chemicals by catalytic hydrogenation of $CO_2$. Stud. Surf. Sci. Catal. 114: 19-30.
  3. Marchionna M, Girolamo MD, Tagliabue L, Spangler MJ, Fleisch TH. 1998. A review of low-temperature methanol synthesis. Stud. Surf. Sci. Catal. 119: 539-544.
  4. Rozovskii AY, Lin GI. 1999. Catalytic synthesis of methanol. Kinet. Catal. 40: 773-794.
  5. Lange J-P. 2001. Methanol synthesis: a short review of technology improvements. Catal. Today 64: 3-8. https://doi.org/10.1016/S0920-5861(00)00503-4
  6. Stock AM, Robinson VL, Goudreau PN. 2000. Two-component signal transduction. Annu. Rev. Biochem. 69: 183-215. https://doi.org/10.1146/annurev.biochem.69.1.183
  7. West AH, Stock AM. 2001. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 26: 369-376. https://doi.org/10.1016/S0968-0004(01)01852-7
  8. Utsumi R, Brissette RE, Rampersaud A, Forst SA, Oosawa K, Inouye M. 1989. Activation of bacterial porin gene expression by a chimeric signal transducer in response to aspartate. Science 245: 1246-1249. https://doi.org/10.1126/science.2476847
  9. Weerasuriya S, Schneider BM, Manson MD. 1998. Chimeric chemoreceptors in Escherichia coli: signaling properties of Tar-Tap and Tap-Tar hybrids. J. Bacteriol. 180: 914-920.
  10. Levskaya A, Chevalier AA, Tabor JL, Simpson ZB, Lavery LA, Levy M, et al. 2005. Synthetic biology: engineering Escherichia coli to see light. Nature 438: 441-442. https://doi.org/10.1038/nature04405
  11. Ganesh I, Ravikumar S, Lee SH, Park SJ, Hong SH. 2013. Engineered fumarate sensing Escherichia coli based on the novel chimeric two-component system. J. Biotechnol. 168: 560-566. https://doi.org/10.1016/j.jbiotec.2013.09.003
  12. de Vries GE, Harms N, Maurer K, Papendrecht A, Stouthamer AH. 1988. Physiological regulation of Paracoccus denitrificans methanol dehydrogenase synthesis and activity. J. Bacteriol. 170: 3731-3737. https://doi.org/10.1128/jb.170.8.3731-3737.1988
  13. Harms N, Reijnders WNM, Anazawa H, van der Palan CJNM, van Spanning RJM, Oltmann LF, et al. 1993. Identification of a two-component regulatory system controlling methanol dehydrogenase synthesis in Paracoccus denitrificans. Mol. Microbiol. 8: 457-470. https://doi.org/10.1111/j.1365-2958.1993.tb01590.x
  14. Sambrook J, Russell DW. 2001. Molecular Cloning - A Laboratory Manual. Cold Spring Harbor. Laboratory Press, Cold Spring Harbor, NY. USA.
  15. Basle A, Rummel G, Storici P, Rosenbusch JP, Schirmer T. 2006. Crystal structure of osmoporin OmpC from E. coli at 2.0 A. J. Mol. Biol. 362: 933-942. https://doi.org/10.1016/j.jmb.2006.08.002
  16. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MA, Eramian D, Shen MY, et al. 2007. Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci. Chapter 2: Unit 2.9.
  17. Bhattacharya D, Cheng J. 2013. 3Drefine: consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization. Proteins 81: 119-131. https://doi.org/10.1002/prot.24167
  18. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, et al. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453-1462. https://doi.org/10.1126/science.277.5331.1453
  19. Eleaume H, Jabbouri S. 2004. Comparison of two standardisation methods in real-time quantitative RT-PCR to follow Staphylococcus aureus genes expression during in vitro growth. J. Microbiol. Methods 59: 363-370. https://doi.org/10.1016/j.mimet.2004.07.015
  20. Maruthamuthu M, Ganesh I, Ravikumar S, Hong SH. 2015. Evaluation of zraP gene expression characteristics and construction of a lead (Pb) sensing and removal system in a recombinant Escherichia coli. Biotechnol. Lett. 37: 659-664. https://doi.org/10.1007/s10529-014-1732-x
  21. Maruthamuthu MK, Selvamani V, Eom GT, Hong SH. 2017. Development of recA promoter based bisphenol-A sensing and adsorption system by recombinant Escherichia coli. Biochem. Eng. J. 122: 31-37. https://doi.org/10.1016/j.bej.2017.02.009
  22. Brosnan JT, Brosnan ME. 2006. The sulfur-containing amino acids: an overview. J. Nutr. 136: 1636S-1640S. https://doi.org/10.1093/jn/136.6.1636S
  23. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  24. Brusstar MJ, Haugen DJ, Gray Jr CL. 2008. Environmental and human health considerations for methanol as a transportation fuel. Presented at the 17th International Symposium on Alternative Fuels, Taiyuan, China, 14 October.
  25. Darmastuti Z, Bhattacharyya P, Andersson M, Kanungo J, Basu S, Kall P, et al. 2013. SiC-FET methanol sensors for process control and leakage detection. Sens. Actuators B Chem. 187: 553-562. https://doi.org/10.1016/j.snb.2013.04.019

Cited by

  1. Engineering Escherichia coli to Sense Non-native Environmental Stimuli: Synthetic Chimera Two-component Systems vol.24, pp.1, 2017, https://doi.org/10.1007/s12257-018-0252-2
  2. C1 Compound Biosensors: Design, Functional Study, and Applications vol.20, pp.9, 2019, https://doi.org/10.3390/ijms20092253
  3. Sensitive and Rapid Phenotyping of Microbes With Soluble Methane Monooxygenase Using a Droplet-Based Assay vol.8, pp.None, 2017, https://doi.org/10.3389/fbioe.2020.00358
  4. Engineering of Recombinant Escherichia coli Towards Methanol Sensing Using Methylobacterium extroquens Two-component Systems vol.48, pp.1, 2020, https://doi.org/10.4014/mbl.1908.08009
  5. Triggering the stringent response enhances synthetic methanol utilization in Escherichia coli vol.61, pp.None, 2017, https://doi.org/10.1016/j.ymben.2020.04.007
  6. Regulatory interventions improve the biosynthesis of limiting amino acids from methanol carbon to improve synthetic methylotrophy in Escherichia coli vol.118, pp.1, 2017, https://doi.org/10.1002/bit.27549
  7. Biosensor-Based Directed Evolution of Methanol Dehydrogenase from Lysinibacillus xylanilyticus vol.22, pp.3, 2021, https://doi.org/10.3390/ijms22031471