• 제목/요약/키워드: Hydrodictyon reticulatum

Search Result 4, Processing Time 0.02 seconds

Nutrient removal from secondary effluent using filamentous algae in raceway ponds

  • Min, Kyung-Jin;Lee, Jongkeun;Cha, Ho-Young;Park, Ki Young
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.191-199
    • /
    • 2019
  • In this study, we investigated the cultivation possibility using Hydrodictyon reticulatum in a continuous raceway pond as a tertiary sewage treatment plant. The cultivation possibility was evaluated by varying the light quantity, wavelength, and hydraulic retention time (HRT). Experimental results showed that the growth rates of algae and the removal efficiencies of nutrients increased as the light quantity increased, and the maximum photosynthetic rate was maintained at $100{\mu}mol/m^2{\cdot}s$ or higher. When wavelength was varied, nutrient removal efficiency and growth rate increased in the following order: green light, red light, white light, and blue light. The nutrient removal efficiencies and algae productivity in HRT 4 d were better than in HRT 8 d. We conclude that if Hydrodictyon reticulatum is cultivated in a raceway pond and used as a tertiary treatment facility in a sewage treatment plant, nutrients can be effectively removed, and production costs can be reduced.

Bioethanol Production from Hydrodictyon reticulatum by Fed-Batch Fermentation Using Saccharomyces cerevisiae KCTC7017

  • Kim, Seul Ki;Nguyen, Cuong Mai;Ko, Eun Hye;Kim, In-Chul;Kim, Jin-Seog;Kim, Jin-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1112-1119
    • /
    • 2017
  • The aim of this study was to develop a potential process for bioethanol production from Hydrodictyon reticulatum (HR), a filamentous freshwater alga, using Saccharomyces cerevisiae (KCTC7017). From the sugar solutions prepared by the four different hydrolysis methods, bioethanol production ranged from 11.0 g/100 g dried material (acid hydrolysis) to 22.3 g/100 g dried material (enzymatic hydrolysis, EH). Bioethanol was fermented from a highly concentrated sugar solution obtained by a decompression-mediated (vacuum) enrichment method (VE). As the results, ethanol was more efficiently produced from HR when sugar solutions were concentrated by VE following EH (EH/VE). Using multiple feeding of the sugar solution prepared by EH/VE from HR, ethanol reached up to a concentration of 54.3 g/l, corresponding to 24.9 g/100 g dried material, which attained the economic level of product concentration (approximately 5%). The results indicate that by using HR, it is feasible to establish a bioethanol production process, which is effective for using microalgae as the raw material for ethanol production.

Usefulness of Freshwater Alga Water-net (Hydrodictyon reticulatum) as Resources for Production of Fermentable Sugars (발효 당용액 생산자원으로서 담수조류 그물말의 유용성)

  • Kim, Seul-Ki;Hwang, Hyun-Jin;Kim, Jae-Deog;Ko, Eun-Hye;Choi, Jung-Sup;Kim, Jin-Seog
    • Korean Journal of Weed Science
    • /
    • v.32 no.2
    • /
    • pp.85-97
    • /
    • 2012
  • To investigate the usefulness of freshwater alga Water-net (Hydrodictyon reticulatum, HR) as resources for production of fermentable sugars, the easiness of enzymatic saccharification was evaluated at first. When 6 plant materials (HR, Spirulina, Chlorella, Scenedesmus, Cladophora, Corn stover) were enzymatically hydrolyzed with 2% solid loading at the same condition, HR showed the highest ratio of saccharification based on glucose production. No milled HR was also completely saccharified at the amounts of optimal enzyme mixture. Glucose yield was not changed though the citrate buffer strength for saccharification was decreased from 0.1 M to 0.1 mM. Only about 10% yield reduction was observed compared to that of $120^{\circ}C$ treatment when HR was enzymatically hydrolyzed at room temperature. The saccharification was normally occurred at $37^{\circ}C$ and pH 6.5 which is general growth condition of fermentable microrganisms, suggesting that HR have a biomass characteristics applicable for the simultaneous saccharification and fermentation. The saccharification was occurred by more than 70~80% of one of the best condition although the supplied enzyme amounts was reduced to 1/10 volume. And the glucose yield by enzymatic hydrolysis was not decreased by 10% HR solid loading and began to decrease at more than 15% solid contents. Above these results show that HR is an interesting algal biomass which is relatively easy to be saccharified by hydrolyzing enzymes. In addition, HR is a flilamentous alga and very easy to be collected. Therefore, HR seems to be an useful and valuable resources in the economical production of fermentable sugars for manufacture of bio-chemical products.

Hydrolysis Methods for the Efficient Manufacture of Sugar Solutions from the Freshwater Alga Water-net (Hydrodictyon reticulatum) (담수조류 그물말로부터 당 용액의 효율적 제조를 위한 가수분해 방법)

  • Kim, Ji-Hyun;Kim, Sul Ki;Ko, Eun Hye;Kim, Jin-Cheol;Kim, Jin-Seog
    • Weed & Turfgrass Science
    • /
    • v.2 no.2
    • /
    • pp.176-183
    • /
    • 2013
  • To explore hydrolysis methods for the efficient manufacture of sugar solutions from the freshwater alga Water-net (Hydrodictyon reticulatum, HR), acid hydrolysis, enzymatic hydrolysis, and combined hydrolysis (acid followed by enzymatic hydrolysis) were investigated. In the one-step acid hydrolysis, the reaction of 8% solids content using 2% sulfuric acid at $120^{\circ}C$ for 1 hour was desirable. In this case, glucose 27.44 g 100 g $DM^{-1}$ could be obtained from the HR-d13 samples. In the two-step acid hydrolysis, the primary hydrolysis (HR powder : 72% sulfuric acid = 1 g : 1.5 mL) was carried out for 1 hour at $60^{\circ}C$, and then the secondary hydrolysis was done for 1 hour at $120^{\circ}C$ after addition of distilled water 23.5 mL. In this case, glucose 35.11 g/100 g DM could be obtained from the HR-d13 samples. In the combined hydrolysis, 25% solids content using 2% hydrochloric acid were reacted for 1 hour at $120^{\circ}C$, and then citrate buffer and hydrolysis enzyme complexes (E1 1.0 mL+E2 0.2 mL $g^{-1}$ dried matter) were added and reacted for 1 - 2 days at $50^{\circ}C$. In this case, glucose 33.5 g 100 g $DM^{-1}$ could be obtained from the HR-d23+26 samples. In conclusion, combined hydrolysis was likely to be more useful saccharification method of HR biomass at a practical level, considering the glucose productivity, generation of fermentation-inhibiting substances (hydroxyl methyl furfural, furfural), and limited use of strong acid.