DOI QR코드

DOI QR Code

Purification and Characterization of the Laccase Involved in Dye Decolorization by the White-Rot Fungus Marasmius scorodonius

  • Jeon, Sung-Jong (Biomedical Engineering & Biotechnology Major, Division of Applied Bioengineering, Dong-Eui University) ;
  • Lim, Su-Jin (Department of Smart-Biohealth, Dong-Eui University)
  • Received : 2017.01.05
  • Accepted : 2017.04.04
  • Published : 2017.06.28

Abstract

Marasmius scorodonius secretes an extracellular laccase in potato dextrose broth, and this enzyme was purified up to 206-fold using $(NH_4)_2SO_4$ precipitation and a Hi-trap Q Sepharose column. The molecular mass of the purified laccase was estimated to be ~67 kDa by SDS-PAGE. The UV/vis spectrum of the enzyme was nontypical for laccases, and metal content analysis revealed that the enzyme contains 1 mole of Fe and Zn and 2 moles of Cu per mole of protein. The optimal pH for the enzymatic activity was 3.4, 4.0, and 4.6 with 2,2'-azino-bis(3-ethylbenzothazoline-6-sulfonate) (ABTS), guaiacol, and 2,6-dimethoxy phenol as the substrate, respectively. The optimal temperature of the enzyme was $75^{\circ}C$ with ABTS as the substrate. The enzyme was stable in the presence of some metal ions such as $Ca^{2+}$, $Cu^{2+}$, $Ni^{2+}$, $Mg^{2+}$, $Mn^{2+}$, $Ba^{2+}$, $Co^{2+}$, and $Zn^{2+}$ at a low concentration (1 mM), whereas $Fe^{2+}$ completely inhibited the enzymatic activity. The enzymatic reaction was strongly inhibited by metal chelators and thiol compounds except for EDTA. This enzyme directly decolorized Congo red, Malachite green, Crystal violet, and Methylene green dyes at various decolorization rates of 63-90%. In the presence of 1-hydroxybenzotriazole as a redox mediator, the decolorization of Reactive orange 16 and Remazol brilliant blue R was also achieved.

Keywords

References

  1. Hoegger PJ, Kilaru S, James TY, Thacker JR, Kues U. 2006. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J. 273: 2308-2326. https://doi.org/10.1111/j.1742-4658.2006.05247.x
  2. Rivera-Hoyos CM, Morales-Alvarez ED, Poutou-Pinales RA, Pedroza-Rodrijuez AM, Rodriguez-Vazquez R, Delgado- Boada JM. 2013. Fungal laccases. Fungal Biol. Rev. 27: 67-82. https://doi.org/10.1016/j.fbr.2013.07.001
  3. Bajpai P. 1999. Application of enzymes in the pulp and paper industry. Biotechnol. Prog. 15: 147-157. https://doi.org/10.1021/bp990013k
  4. Duran N, Rosa MA, D'Annibale A, Gianfreda L. 2002. Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb. Technol. 31: 907-931. https://doi.org/10.1016/S0141-0229(02)00214-4
  5. Cameselle C, Pazos M, Lorenzo M, Sanroman MA. 2003. Enhanced decolourisation ability of laccase towards various synthetic dyes by an electrocatalysis technology. Biotechnol. Lett. 25: 603-606. https://doi.org/10.1023/A:1023011524120
  6. Rim K, Lasssd B, Steve W, Mariem E, Abdelhafidh D, Sarni S, Tabar M. 2010. Decolourization and detoxification of textile industry wastewater by the laccase-mediator system. J. Hazard. Mater. 175: 802-808. https://doi.org/10.1016/j.jhazmat.2009.10.079
  7. Levin L, Melignani E, Ramos AM. 2010. Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresour. Technol. 101: 4554-4563. https://doi.org/10.1016/j.biortech.2010.01.102
  8. Shaul GM, Holdsworth TJ, Dempsey CR, Dostal KA. 1991. Fate of water soluble azo dyes in the activated sludge process. Chemosphere 22: 107-119. https://doi.org/10.1016/0045-6535(91)90269-J
  9. Hongman H, Jiti Z, Jing W, Cuihong D, Bin Y. 2004. Enhancement of laccase production by Pleurotus ostreatus and its use for the decolorization of anthraquinone dye. Process Biochem. 39: 1415-1419. https://doi.org/10.1016/S0032-9592(03)00267-X
  10. Li L, Wenkui D, Peng Y, Jian Z, Yinbo Q. 2009. Decolorisation of synthetic dyes by crude laccase from Rigidoporus lignosus W1. J. Chem. Technol. Biotechnol. 84: 399-404. https://doi.org/10.1002/jctb.2053
  11. Ainsworth GC, Sparrow FK, Sussman AS. 1973. A taxonomic review with keys: basidiomycetes and lower fungi. In Ainsworth GC, Sparrow FK, Sussman AS (eds.). The Fungi, An Advanced Treatise, Vol. 4B. Academic Press, Orlando. USA.
  12. Lim SJ, Jeon SJ. 2014. Optimal conditions for laccase production from the white-rot fungus Marasmius scorodonius. Korean J. Microbiol. Biotechnol. 42: 225-231. https://doi.org/10.4014/kjmb.1407.07001
  13. Schuckel J, Matura A, van Pee KH. 2011. One-copper laccase-related enzyme from Marasmius sp.: purification, characterization and bleaching of textile dyes. Enzyme Microb. Technol. 48: 278-284. https://doi.org/10.1016/j.enzmictec.2010.12.002
  14. Perrella FW. 1988. EZ-FIT: a practical curve-fitting microcomputer program for the analysis of enzyme kinetic data on IBM-PC compatible computers. Anal. Biochem. 174: 437-447. https://doi.org/10.1016/0003-2697(88)90042-5
  15. Baldrian P. 2006. Fungal laccases - occurrence and properties. FEMS Microbiol. Rev. 30: 215-242. https://doi.org/10.1111/j.1574-4976.2005.00010.x
  16. Liu H, Tong C, Du B, Liang S, Lin Y. 2015. Expression and characterization of LacMP, a novel fungal laccase of Moniliophthora perniciosa FA553. Biotechnol. Lett. 37: 1829-1835. https://doi.org/10.1007/s10529-015-1865-6
  17. Rheinhammar B. 1984. Laccase, pp. 4-10. In R. Lontie (ed.). Copper Proteins and Copper Enzymes. CRC Press, Inc., Boca Raton, FL. USA.
  18. Eggert C, Temp U, Eriksson KE. 1996. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl. Environ. Microbiol. 62: 1151-1158.
  19. Wood DA. 1980. Production, purification and properties of extracellular laccase of Agaricus bisporus. J. Gen. Microbiol. 177: 327-338.
  20. De Vries OMH, Kooistra WHCF, Wessels JGH. 1986. Formation of an extracellular laccase by a Schizophyllum commune dikaryon. J. Gen. Microbiol. 132: 2817-2826.
  21. Karhunen E, Niku-Paavola ML, Viikari L, Haltia T, van der Meer RA, Duine JA. 1990. A novel combination of prosthetic groups in a fungal laccase: PQQ and two copper atoms. FEBS Lett. 267: 6-8. https://doi.org/10.1016/0014-5793(90)80273-L
  22. Okamoto K, Yanagi SO, Sakai T. 2000. Purification and characterization of extracellular laccase from Pleurotus ostreatus. Mycoscience 41: 7-13. https://doi.org/10.1007/BF02464380
  23. Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G. 1997. An ovel white laccase from Pleurotus ostreatus. J. Biol. Chem. 271: 31301-31307.
  24. Min KL, Kim YH, Kim YW, Jung HS, Hah YC. 2001. Characterization of a novel laccase produced by the woodrotting fungus Phellinus ribis. Arch. Biochem. Biophys. 392: 279-286. https://doi.org/10.1006/abbi.2001.2459
  25. Kaneko S, Cheng M, Murai H, Takenaka S, Murakami S, Aoki K. 2009. Purification and characterization of an extracellular laccase from Phlebia radiata strain BP-11-2 that decolorizes fungal melanin. Biosci. Biotechnol. Biochem. 73: 939-942. https://doi.org/10.1271/bbb.80740
  26. Nakamura K, Go N. 2005. Function and molecular evolution of multicopper blue proteins. Cell. Mol. Life Sci. 62: 2050-2066. https://doi.org/10.1007/s00018-004-5076-x
  27. Robles A, Lucas R, Cienfuegos G, Galvez A. 2000. Phenoloxidase (laccase) activity in strains of the hyphomycete Chalara paradoxa isolated from olive mill wastewater disposal ponds. Enzyme Microb. Technol. 26: 484-490. https://doi.org/10.1016/S0141-0229(99)00197-0
  28. Murugesan K, Kim YM, Jeon JR, Chang YS. 2009. Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum. J. Hazard. Mater. 168: 523-529. https://doi.org/10.1016/j.jhazmat.2009.02.075
  29. Mechichi T, Mhiri N, Sayadi S. 2006. Remazol Brilliant Blue R decolorization by the laccase from Trametes trogii. Chemosphere 64: 998-1005 https://doi.org/10.1016/j.chemosphere.2005.12.061
  30. Khlifi R, Belbahri L, Woodward S, Ellouz M, Dhouib A, Sayadi S, Mechichi T. 2010. Decolourization and detoxification of textile industry wastewater by the laccase-mediator system. J. Hazard. Mater. 175: 802-808. https://doi.org/10.1016/j.jhazmat.2009.10.079
  31. El-Batal AI, ElKenawy NM, Yassin AS, Amin MA. 2015. Laccase production by Pleurotus ostreatus and i ts appl ication in synthesis of gold nanoparticles. Biotechnol. Rep. 5: 31-39. https://doi.org/10.1016/j.btre.2014.11.001
  32. Li J, McMillin DR. 1992. The removal of the type-2 copper from Rhus vernicifera laccase. Biochim. Biophys. Acta 28: 239-245.
  33. D'Souza-Ticlo D, Sharma D, Raghukumar C. 2009. A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus. Mar. Biotechnol. (NY) 11: 725-737. https://doi.org/10.1007/s10126-009-9187-0
  34. Zheng Z, Li H, Li L, Shao W. 2012. Biobleaching of wheat straw pulp with recombinant laccase from the hyperthermophilic Thermus thermophiles. Biotechnol. Lett. 34: 541-547. https://doi.org/10.1007/s10529-011-0796-0
  35. Haibo Z, Yinglong Z, Feng H, Peiji G, Jiachuan C. 2009. Purification and characterization of a thermostable laccase with unique oxidative characteristics from Trametes hirsuta. Biotechnol. Lett. 31: 837-843. https://doi.org/10.1007/s10529-009-9945-0
  36. Reiss R, Ihssen J, Thony-Meyer L. 2011. Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum. BMC Biotechnol. 11: 1-11. https://doi.org/10.1186/1472-6750-11-1
  37. Yang XQ, Zhao XX, Liu CY, Zheng Y, Qian SJ. 2009. Decolorization of azo, triphenylmethane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase. Process Biochem. 44: 1185-1189. https://doi.org/10.1016/j.procbio.2009.06.015
  38. Grassi E, Scodeller P, Filiel N, Carballo R, Levin L. 2011. Potential of Trametes trogii c ul ture f l uids a nd i ts p urified laccase for the decolorization of different types of recalcitrant dyes without the addition of redox mediators. Int. Biodeterior. Biodegradation 65: 635-643. https://doi.org/10.1016/j.ibiod.2011.03.007
  39. Zouari-Mechichi H, Mechichi T, Dhouib A, Sayadi S, Martinez AT, Martinez MJ. 2006. Laccase purification and characterization from Trametes trogii isolated in Tunisia: decolorization of textile dyes by the purified enzyme. Enzyme Microb. Technol. 39: 141-148. https://doi.org/10.1016/j.enzmictec.2005.11.027
  40. Soares GM, de Amorim MT, Costa-Ferreira M. 2001. Use of laccase together with redox mediators to decolourize remazol brilliant blue R. J. Biotechnol. 89: 123-129. https://doi.org/10.1016/S0168-1656(01)00302-9
  41. Reyes P, Pickard MA, Vazquez-Duhalt R. 1999. Hydroxybenzotriazole increases the range of textile dyes decolorized by immobilized laccase. Biotechnol. Lett. 21: 875-880. https://doi.org/10.1023/A:1005502906890

Cited by

  1. A novel homodimer laccase from Cerrena unicolor BBP6: Purification, characterization, and potential in dye decolorization and denim bleaching vol.13, pp.8, 2018, https://doi.org/10.1371/journal.pone.0202440
  2. Biodegradation of synthetic dye using partially purified and characterized laccase and its proposed mechanism vol.16, pp.12, 2017, https://doi.org/10.1007/s13762-019-02226-5
  3. Biomedical and Pharmaceutical-Related Applications of Laccases vol.21, pp.1, 2017, https://doi.org/10.2174/1389203720666191011105624
  4. Laccase activity of the ascomycete fungus Nectriella pironii and innovative strategies for its production on leaf litter of an urban park vol.15, pp.4, 2017, https://doi.org/10.1371/journal.pone.0231453
  5. Multiple Tolerances and Dye Decolorization Ability of a Novel Laccase Identified from Staphylococcus Haemolyticus vol.30, pp.4, 2017, https://doi.org/10.4014/jmb.1910.10061
  6. Tree bark scrape fungus: A potential source of laccase for application in bioremediation of non-textile dyes vol.15, pp.6, 2017, https://doi.org/10.1371/journal.pone.0229968
  7. Insight into multicopper oxidase laccase fromMyrothecium verrucariaITCC-8447: a case study using in silico and experimental analysis vol.55, pp.12, 2017, https://doi.org/10.1080/03601234.2020.1812334
  8. Purification and Characterization of a Thermo- and pH-Stable Laccase From the Litter-Decomposing Fungus Gymnopus luxurians and Laccase Mediator Systems for Dye Decolorization vol.12, pp.None, 2017, https://doi.org/10.3389/fmicb.2021.672620
  9. Properties of Laccase of Bacillus marisflavi Strain BB4 and its Synthetic Dyes Decolorization Analysis vol.91, pp.2, 2017, https://doi.org/10.1007/s40011-021-01235-0
  10. Mushroom Ligninolytic Enzymes―Features and Application of Potential Enzymes for Conversion of Lignin into Bio-Based Chemicals and Materials vol.11, pp.13, 2017, https://doi.org/10.3390/app11136161
  11. Enterobacter sp. AI1 produced a thermo-acidic-tolerant laccase with a high potential for textile dyes degradation vol.38, pp.None, 2021, https://doi.org/10.1016/j.bcab.2021.102206
  12. Decolourization of congo red synthetic dyes by dark septate endophytes vol.948, pp.1, 2017, https://doi.org/10.1088/1755-1315/948/1/012073