DOI QR코드

DOI QR Code

A Study on the Prediction of the Mechanical Properties of Printed Circuit Boards Using Modal Parameters

모달 파라미터 정보를 활용한 PCB 물성 예측에 관한 연구

  • Received : 2016.08.08
  • Accepted : 2017.01.17
  • Published : 2017.05.01

Abstract

In this study, we propose a method for predicting the mechanical properties of the printed circuit board (PCB) that has transversely isotropic characteristics. Unlike the isotropic material, there is no specific test standard for acquisition of the transversely isotropic properties. In addition, common material test methods are not readily applicable to that type of laminated thin plate. Utilizing the natural frequency obtained by a modal test and the sizing optimization technique provided in $OptiStruct^{(R)}$, the mechanical properties of a PCB were derived to minimize the difference between test and analysis results. In addition, the validity of the predicted mechanical properties was confirmed by the MAC (Modal Assurance Criteria) value of each of the compared mode shapes. This proposed approach is expected to be extended to the structural analysis for the design verification of the top product that includes a PCB.

본 연구에서는 횡등방성 특성을 갖는 인쇄회로기판(PCB)의 물성 예측을 위한 방법을 제안하였다. 등방성 소재와 달리 횡등방성 소재의 물성 취득을 위한 별도의 시험기준은 없으며, PCB와 같이 적층된 형태의 박판 구조물에 대해서는 재료시험 또한 쉽지가 않다. 모달시험을 통해 취득한 모달 파라미터와 상용 소프트웨어인 $OptiStruct^{(R)}$의 치수 최적화 기법을 활용, 시험-해석 간 주파수 차이를 최소화시키는 강성행렬 성분을 도출하여 기계적 물성을 예측하였다. 또한 주파수 별 모드형상을 MAC(Modal Assurance Criteria) 값을 기준으로 비교, 검토하여 예측 물성에 대한 유효성을 확인하였다. 제안된 방법은 향후 PCB를 포함하는 전장제품의 설계검증을 위한 구조해석에 확대 적용될 것으로 기대한다.

Keywords

References

  1. Subramanya, K. P., Pandit, J. K., Prasad, C. S. and Thyagaraj, M. R., 2014, "Vibration Analysis Study of Spacecraft Electronic Package: A Review," International Journal of Science, Engineering and Technology Research, Vol. 3, No. 3, pp. 503-507.
  2. Sottos, N. R., Ockers, J. M. and Swindeman, M., 1999, "Thermoelastic Properties of Plain Weave Comosites for Multilayer Circuit Board Applications," Journal of Electronic Packaging, Transactions of the ASME, Vol. 121, No. 1, pp. 37-44. https://doi.org/10.1115/1.2792659
  3. Wang, K. Y., 2012, "Development and Application of Composite Material Lamination Theory for Printed Circuit Boards," Master thesis, Auburn University, Auburn, Alabama, 2012.
  4. Shrotriya, P. and Sottos, N. R., 1998, "Creep and Relaxation Behavior of Woven Glass/Epoxy Substrates for Multilayer Circuit Board Applications," Polymer Composites, Vol. 19, No. 5, pp. 567-578. https://doi.org/10.1002/pc.10130
  5. Amy, R. A, Aglietti, G. S. and Richardson, G., 1999, "Accuracy of Simplified Printed Circuit Board Finite Element Models," Microelectronics Reliability, Vol. 50, No. 1, pp. 86-97. https://doi.org/10.1016/j.microrel.2009.09.001
  6. Rzepka, S., Kramer, F., Grassme O. and Lienig, J., 2008, "A Multilayer PCB Material Modeling Approach Based on Laminate Theory," Proceedings of 9th International Conference on Thermal, Mechanical and Multiphysics and Experiments in Micro-Electronics and Micro-Systems, pp. 234-243.
  7. Lee, D. Y., Bae, Y. C., Kim, H. S. and Lee, Y. R., 2011, "Mechanical Property Measurement of a Transversely Isotropic Material for Gas Turbine Blades by the Experimental Modal Analysis," Korean Society for Noise and Vibration Engineering, pp. 155-156.
  8. Jun, O. C., Byun, K. H. and Joo, Y. S., 2009, "A Study on Updating of Analytic Model of Dynamics for Aircraft Structures Using Optimization Technique," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 37, No. 2, pp. 131-138. https://doi.org/10.5139/JKSAS.2009.37.2.131
  9. Huang, Z., Zang, C. and Friswell, M. I., 2014, "Parameter Identification of a Printed Circuit Board Structure Using Model Updating and Scanning Laser Vibrometer Measurements," Proceedings of ISMA 2014 including USD2014, pp. 2679-2690.
  10. Coombs, C. F., 2008, Printed Circuits Handbook, McGraw Hill, pp. 154.
  11. Lai, W. M., Rubin, D. and Krempl, E., 1993, Introduction to Continuum Mechanics, Pergamon Press, pp. 308-312.
  12. Mark, S. and Torben, R. L., 1987, Piezoelectric Accelerometer and Vibration Preamplifier Handbook, Bruel and Kjaer, pp. 86-88.
  13. Pecht, M., Hillman, C., Rogers, K. and Jennings, D., 1999, "Conductive Filament Formation: A Potential Reliability Issue in Laminated Printed Circuit Cards with Hollow Fibers," IEEE Transactions on Electronics Packaging Manufacturing, Vol. 22, No. 1, pp. 80-84. https://doi.org/10.1109/6104.755092
  14. Abdalla, F. H., Megat, M. H., Susan, M. S. and Sahari, B. B., 2008, "Determination of Volume Fraction Values of Filament Wound Glass and Carbon Fiber Reinforced Composites," ARPN Journal of Engineering and Applied Sciences, Vol. 3, No. 4, pp. 7-11.
  15. McCaslin, L., 2008, "Methodology for Predicting Microelectronic Substrate Warpage Incorporating Copper Trace Pattern Characteristics," Master's Thesis, Georgia Institute of Technology, pp. 27.
  16. Bhavsar, N. R., Shinde, H. P. and Bhat, M., 2014, "Determination of Mechanical Properties of PCB," International Journal on Mechanical Engineering and Robotics, Vol. 2, No. 4, pp. 23-27.
  17. Zhang, B., Liu, P. K., Ding, H. and Cao, W., 2010, "Modeling of Board-level Package by Finite Element Analysis and Laser Interferometer Measurements," Microelectronics Reliability, Vol. 50, No. 7, pp. 1021-1027. https://doi.org/10.1016/j.microrel.2010.03.009