DOI QR코드

DOI QR Code

Thermal Characteristics of Concrete Fabricated with Blast Furnace Slag Subjected to Thermal Cycling Condition

고로슬래그 혼입 콘크리트의 고온 조건에서의 열역학 성능

  • Yang, In-Hwan (Department of Civil Engineering, Kunsan National University) ;
  • Park, Ji-Hun (Department of Civil Engineering, Kunsan National University)
  • Received : 2017.09.22
  • Accepted : 2017.12.13
  • Published : 2017.12.30

Abstract

The thermal characteristics of concrete fabricated with blast furnace slag were investigated in this paper. Test parameters included water-binder ratio and the content of furnace slag. Experimental program were performed to measure mechanical properties including compressive strength and split tensile strength under high-temperature thermal cycling, and to measure thermal properties including thermal conductivity and specific heat. Test results showed that the residual compressive strength of mixtures with blast furnace slag was greater than that of mixture without blast furnace slag. In addition, thermal conductivity of mixtures with blast furnace slag was greater than that of mixtures without blast furnace slag. It indicates that blast furnace slag was favorable for charging and discharging in thermal energy storage system. Test results of this study would be used to design concrete module system of thermal energy storage.

이 연구에서는 고온의 태양열 에너지를 저장하기 위한 고로슬래그 콘크리트의 열역학적 특성을 파악하였다. 고로슬래그 콘크리트의 열역학적 특성에 미치는 영향을 파악하기 위한 실험연구를 수행하였다. 실험변수로써 고로슬래그 함유량과 물-바인더 비를 고려하였다. 고로슬래그 콘크리트의 역학적 특성으로써 열사이클 전과 후의 압축강도 및 인장강도를 측정하고, 열적 특성으로써 열전도율과 비열을 측정하였다. 고로슬래그를 포함한 콘크리트의 열싸이클 적용 후의 잔류압축강도가 고로슬래그를 포함하지 않은 콘크리트의 잔류압축강도보다 크다. 또한, 고로슬래그를 혼입한 콘크리트의 열전도율이 고로슬래그를 포함하지 않은 콘크리트의 열전도율보다 더욱 크다. 이는 고로슬래그 콘크리트가 열에너지의 축열과 방열에 효과적인 것을 나타낸다. 실험연구 결과는 콘크리트 열저장 축열 모듈 설계에 효율적으로 활용될 수 있다.

Keywords

References

  1. Bilodeau, A., Kodur, V.K.R., Hoff, G.C. (2004). Optimization ofthe type and amount of polypropylene fibers for preventingthe spalling of lightweight concrete subjected to hydrocarbonfire, Cement and Concrete Composites, 26(2), 163-174. https://doi.org/10.1016/S0958-9465(03)00085-4
  2. Faas, S.E. (1983). 10-MWe Solar Thermal Central-ReceiverPilot Plant: Thermal-Storage-Subsystem Evaluation-SubsystemActivation and Controls Testing Phase, Report No.SAND-83-8015, Sandia National Labs, Livermore, California.
  3. Fernandez, A.I., Martinez, M., Segarra, M., Martorell, I., Cabeza,L.F. (2010). Selections of materials with potential in sensiblethermal energy storage, Solar Energy Materials and SolarCells, 94(10), 1723-1729. https://doi.org/10.1016/j.solmat.2010.05.035
  4. Hannant, D.J. (1998). Durability of polypropylene fibers in portlandcement-based composites: eighteen years of data, Cementand Concrete Research, 28(12), 1809-1817 https://doi.org/10.1016/S0008-8846(98)00155-0
  5. John, E., Hale. M., Selvam, P. (2013). Concrete as a thermal energy storage medium for thermocline solar energy storage systems, Solar Energy, 96, 194-204. https://doi.org/10.1016/j.solener.2013.06.033
  6. Kolb, G.J., Hassani, V. (2006). Performance analysis of thermocline energy storage proposed for the 1 MW saguaro solar trough plant, ASME Solar Energy Division International Solar Energy Conference, 1-5.
  7. Laing, D., Steinmann, W.D., Tamme, R., Richter, C. (2006). Solid media thermal storage for parabolic trough power plants, Solar Energy, 80(10), 1283-1289. https://doi.org/10.1016/j.solener.2006.06.003
  8. Laing, D., Steinmann, W.D., Viebahn, P., Gräter, F., Bahl, C.(2010). Economic analysis and life cycle assessment ofconcrete thermal energy storage for parabolic trough powerplants, Journal of Solar Energy Engineering, 132(4), 041013. https://doi.org/10.1115/1.4001404
  9. Laing, D., Steinmann, W.D., Tamme, R., Wörner, A., Zunft, S.(2012). Advances in thermal energy storage development atthe german aerospace center (DLR), Energy Storage Scienceand Technology, 1(1), 13-25.
  10. Neville, A. M. (2012). Properties of Concrete(5th Edition),Pearson Education.
  11. Pacheco, J.E., Showalter, S.K., Kolb, W.J. (2002). Developmentof a molten-salt thermocline thermal storage system forparabolic trough plants, Journal of Solar Energy Engineering,124(2), 153-159. https://doi.org/10.1115/1.1464123
  12. Skinner, J.E., Strasser, M.N., Brown, B.M., Selvam, R.P. (2014). Testing of high-performance concrete as a thermal energy storage medium at high temperatures, Journal of Solar Energy Engineering, 136(2), 021004.
  13. Strasser, M.N., Selvam, R.P. (2014). A cost and performance comparison of packed bed and structured thermocline thermal energy storage systems, Solar Energy, 108, 390-402. https://doi.org/10.1016/j.solener.2014.07.023
  14. Suhaendi, S.L., Horiguchi, T., Shimura, K. (2008). Effect of polypropylene fibre geometry on explosive spalling mitigation in high strength concrete under elevated temperature condition, Concrete for Fire Engineering, 149-156.
  15. Yang, I.H., Kim, K.C. (2016). Mechanical and thermal characteristics of cement-based composite for solar thermal energy storage system, Journal of the Korea Institute for Structural Maintenance and Inspection, 20(4), 9-18 [in Korean]. https://doi.org/10.11112/jksmi.2016.20.4.009
  16. Yang, I.H., Kim, K.C., Choi, Y.C. (2016). Effect of cementitious composite on the thermal and mechanical properties of fiber-reinforced mortars for thermal energy storage, Journal of the Korea Concrete Institute, 28(4), 395-405 [in Korean]. https://doi.org/10.4334/JKCI.2016.28.4.395
  17. Yuan, H.W., Lu, C.H., Xu, Z.Z., Ni, Y.R., Lan, X.H. (2012). Mechanical and thermal properties of cement composite graphite for solar thermal storage materials, Solar Energy, 86(11), 3227-3233. https://doi.org/10.1016/j.solener.2012.08.011