References
- Bilodeau, A., Kodur, V.K.R., Hoff, G.C. (2004). Optimization ofthe type and amount of polypropylene fibers for preventingthe spalling of lightweight concrete subjected to hydrocarbonfire, Cement and Concrete Composites, 26(2), 163-174. https://doi.org/10.1016/S0958-9465(03)00085-4
- Faas, S.E. (1983). 10-MWe Solar Thermal Central-ReceiverPilot Plant: Thermal-Storage-Subsystem Evaluation-SubsystemActivation and Controls Testing Phase, Report No.SAND-83-8015, Sandia National Labs, Livermore, California.
- Fernandez, A.I., Martinez, M., Segarra, M., Martorell, I., Cabeza,L.F. (2010). Selections of materials with potential in sensiblethermal energy storage, Solar Energy Materials and SolarCells, 94(10), 1723-1729. https://doi.org/10.1016/j.solmat.2010.05.035
- Hannant, D.J. (1998). Durability of polypropylene fibers in portlandcement-based composites: eighteen years of data, Cementand Concrete Research, 28(12), 1809-1817 https://doi.org/10.1016/S0008-8846(98)00155-0
- John, E., Hale. M., Selvam, P. (2013). Concrete as a thermal energy storage medium for thermocline solar energy storage systems, Solar Energy, 96, 194-204. https://doi.org/10.1016/j.solener.2013.06.033
- Kolb, G.J., Hassani, V. (2006). Performance analysis of thermocline energy storage proposed for the 1 MW saguaro solar trough plant, ASME Solar Energy Division International Solar Energy Conference, 1-5.
- Laing, D., Steinmann, W.D., Tamme, R., Richter, C. (2006). Solid media thermal storage for parabolic trough power plants, Solar Energy, 80(10), 1283-1289. https://doi.org/10.1016/j.solener.2006.06.003
- Laing, D., Steinmann, W.D., Viebahn, P., Gräter, F., Bahl, C.(2010). Economic analysis and life cycle assessment ofconcrete thermal energy storage for parabolic trough powerplants, Journal of Solar Energy Engineering, 132(4), 041013. https://doi.org/10.1115/1.4001404
- Laing, D., Steinmann, W.D., Tamme, R., Wörner, A., Zunft, S.(2012). Advances in thermal energy storage development atthe german aerospace center (DLR), Energy Storage Scienceand Technology, 1(1), 13-25.
- Neville, A. M. (2012). Properties of Concrete(5th Edition),Pearson Education.
- Pacheco, J.E., Showalter, S.K., Kolb, W.J. (2002). Developmentof a molten-salt thermocline thermal storage system forparabolic trough plants, Journal of Solar Energy Engineering,124(2), 153-159. https://doi.org/10.1115/1.1464123
- Skinner, J.E., Strasser, M.N., Brown, B.M., Selvam, R.P. (2014). Testing of high-performance concrete as a thermal energy storage medium at high temperatures, Journal of Solar Energy Engineering, 136(2), 021004.
- Strasser, M.N., Selvam, R.P. (2014). A cost and performance comparison of packed bed and structured thermocline thermal energy storage systems, Solar Energy, 108, 390-402. https://doi.org/10.1016/j.solener.2014.07.023
- Suhaendi, S.L., Horiguchi, T., Shimura, K. (2008). Effect of polypropylene fibre geometry on explosive spalling mitigation in high strength concrete under elevated temperature condition, Concrete for Fire Engineering, 149-156.
- Yang, I.H., Kim, K.C. (2016). Mechanical and thermal characteristics of cement-based composite for solar thermal energy storage system, Journal of the Korea Institute for Structural Maintenance and Inspection, 20(4), 9-18 [in Korean]. https://doi.org/10.11112/jksmi.2016.20.4.009
- Yang, I.H., Kim, K.C., Choi, Y.C. (2016). Effect of cementitious composite on the thermal and mechanical properties of fiber-reinforced mortars for thermal energy storage, Journal of the Korea Concrete Institute, 28(4), 395-405 [in Korean]. https://doi.org/10.4334/JKCI.2016.28.4.395
- Yuan, H.W., Lu, C.H., Xu, Z.Z., Ni, Y.R., Lan, X.H. (2012). Mechanical and thermal properties of cement composite graphite for solar thermal storage materials, Solar Energy, 86(11), 3227-3233. https://doi.org/10.1016/j.solener.2012.08.011