• Title/Summary/Keyword: 열전도율

Search Result 334, Processing Time 0.031 seconds

A Study on Thermal Conductivity of Inorganic Insulation Using Pearlite (펄라이트를 사용한 무기단열재의 열전도율 측정 연구)

  • Park, Jong-Pil;Jeon, Chan-Ki;Kim, Ju-Ho;Lee, Jae-Seong;Shim, Jae-Young
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2015.11a
    • /
    • pp.138-140
    • /
    • 2015
  • 건축물에서 단열재는 일정한 온도를 유지하도록 하려는 부분의 바깥쪽을 피복하여 외부로의 열손실이나 열의 유입을 적게 하기 위한 재료이다. 단열재는 소재(素材) 자체의 열전도율(熱傳導率)이 작은 것이 바람직하나, 대부분 열전도율이 그다지 작지 않다. 그러므로 대개의 경우 열전도율을 작게 하기 위해서 다공질(多孔質)이 되도록 만들어 기공(氣孔) 속의 공기의 단열성을 이용한다. 일반적으로 재료의 밀도가 크면 열전도율 값이 크게 되는 경향이 있다. 이에 본 연구에서는 경량골재인 펄라이트의 입자 크기별 열전도율을 측정하여 단열재로서 사용여부를 판단하고자 한다.

  • PDF

Experimental Study on Thermal Conductivity of Concrete (콘크리트의 열전도율에 관한 실험적 연구)

  • 김국한;전상은;방기성;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.305-313
    • /
    • 2001
  • Conductivity is an important thermal property which governs heat transfer in a solid medium. Generally, the determination of conductivity in concrete is very difficult, because concrete is a heterogeneous material composed of cement, water, aggregate, et cetera and time dependent material of which properties change with curing age. In this study, influencing factors on thermal conductivity of concrete are quantitatively investigated by QTM-D3, a conductivity tester developed in Japan. Then, a prediction equation of thermal conductivity of concrete is suggested from the regression analysis of test results. To consider the factors influencing thermal conductivity of concrete, mortar, and cement paste, seven testing variables (age, amount of cement, types of admixtures, amount of coarse aggregate, fine aggregate ratio, temperature, and humidity condition) of the specimens are used. According to the experimental results, the amount of coarse aggregate and humidity condition of specimen are the main factors affecting the conductivity of concrete. Meanwhile, the conductivity of mortar and cement paste is strongly affected by the amount of cement and types of admixtures. However, the curing age has minor effect on the conductivity variation. Finally, the prediction formula of concrete conductivity as a function of aggregate amount, fine aggregate ratio, specimen temperature, and humidity condition is developed.

Effective thermal conductivity of the phase change material with metal scrap (금속스크랩이 혼합된 상변화물질의 유효열전도율)

  • 김시범;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.923-928
    • /
    • 1986
  • A set of measurements has been made for the thermal conductivity of the pure paraffin in liquid and solid phases and for the effective thermal conductivity of the paraffin with metal scrap with the aid of the heat flux meter. Ther thermopile-type heat flux meter has been designed by steady state method and the functional relation between the temperature difference of both sides and heat flux has been obtained. The measured values of thermal conductivity are compared with the existing data for the pure paraffin and with the predicated values from the suggested model in which only one empirical constant is contained. The comparison within ten percent of the volume fraction of the metal scrap in the paraffin is satisfactory.

Thermal Characteristic Analysis of Thermal Protection System with Porous Insulation (다공성 단열재를 포함한 열방어구조의 열 특성 분석)

  • Hwang, Kyungmin;Kim, Yongha;Lee, Jungjin;Park, Jungsun
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.26-34
    • /
    • 2016
  • In a number of industries, porous insulations have been frequently used, reducing thermal insulation space through excellent performance of the thermal insulation's characteristics. This paper suggests an effective thermal conductivity prediction model. Firstly, we perform a literature review of traditional effective thermal conductivity prediction models and compare each model with experimental heat transfer results. Furthermore, this research defines the effectiveness of thermal conductivity prediction models using experimental heat transfer results and the Zehner-Schlunder model. The newly defined effective thermal conductivity prediction model has been verified to better predict performance than other models. Finally, this research performs a transient heat transfer analysis of a thermal protection system with a porous insulation in a high speed vehicle using the finite element method and confirms the validity of the effective thermal conductivity prediction model.

A Study on the Thermal Conductivity of Inorganic Insulation Properties According to the Binder Types (바인더 종류에 따른 무기단열재의 열전도 특성에 관한 연구)

  • Jeon, Chanki;Lee, Jaeseong;Chung, Hoon;Park, Jongpil;Shim, Jaeyeong
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.3
    • /
    • pp.286-291
    • /
    • 2016
  • In this study, we conducted about the manufacture of a non-combustible inorganic insulation by replacing the binder type for satisfaction of thermal conductivity for developing a lightweight inorganic insulation. Thermal conductivity was measured using a machine of HFM-436. We made samples are inorganic insulation by using SH-1(liquid) of S company and SH-2(solids). By Mixing Pearlite and SH-4(Liquid) was produced as insulation sample 2. Each was shaped into a binder and pearlite in the frame. After complete drying, thermal conductivity was measured by using HFM-435. The thermal conductivity was determined using two different binder. We analyzed the effect on thermal conductivity in binder.

Apparatus for Comparing Thermal Conductivity of Nanofluids and Base Fluid Using Simultaneously Measured Resistance Variation Signals from Two Hot Wire Sensors (동시에 측정된 두 열선센서의 저항변화 신호를 이용한 나노유체와 기본유체의 열전도율 비교장치)

  • Lee, Shin Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.29-36
    • /
    • 2015
  • Exact comparisons of the thermal conductivities of the base fluid and a nanofluid are very important in the early stages of nanofluid development. A simple procedure of measuring the thermal conductivity of the two fluids by the transient hot wire method and numerically dividing these values is used for this purpose. However, because the experiments are not performed simultaneously and the physical properties of the measurement system are sometimes not properly known, large errors are incurred during the evaluation process. This article proposes a new apparatus for thermal conductivity comparison where the working principle is mainly based on relative measurement rather than absolute measurement. The measuring circuit and data processing steps are explained in detail; a validation test was performed using the well-known glycerine and engine oil.

Prediction Modeling on Effective Thermal Conductivity of Porous Insulation in Thermal Protection System (열방어구조의 다공성 단열재 유효 열전도율 예측 모델링)

  • Hwang, Kyung-Min;Kim, Yong-Ha;Kim, Myung-Jun;Lee, Hee-Soo;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.163-172
    • /
    • 2017
  • Porous insulation have been frequently used in a number of industries by minimizing thermal insulation space because of excellent performance of their thermal insulation. This paper devices an effective thermal conductivity prediction model. First of all, we perform literature survey on traditional effective thermal conductivity prediction models and compare each other model with heat transfer experimental results. Furthermore this research defines advanced effective thermal conductivity prediction models model based on heat transfer experimental results, the Zehner-Schlunder model. Finally we verify that the newly defined effective thermal conductivity prediction model has better performance prediction than other models. Finally, this research performs a transient heat transfer analysis of thermal protection system with a porous insulation using the finite element method and confirms validity of the effective thermal conductivity prediction model.

A Study on the Insulation Properties of Ballon Pearlite and Pearlite (흑요소 펄라이트와 진주암 펄라이트의 단열 특성에 관한 연구)

  • Lee, Jae-Seong;Jeon, Chan-Ki;Park, Jong-Pil
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2016.11a
    • /
    • pp.183-185
    • /
    • 2016
  • 본 연구에서는 불연성 무기단열재 제조를 위해 재료의 치환으로 열전도율을 충족시켜 경량 무기단열재 개발을 위해 연구하였다. 단열재로도 쓰이지만 화단의 흙을 대신하여 쓰이는 펄라이트 2종류와 바인더를 배합하여 샘플 3개를 제작하였다. 3가지 샘플들을 완전건조 후 열전도 측정기인 HFM-435를 이용하여 열전도율을 측정하였다. 펄라이트와 흑요소 펄라이트 두가지 재료를 혼합하여 만든 총 3개의 샘플의 열전도율을 측정하여 열전도 효율이 좋은 재료를 사용하여 단열재를 제작하고 각 재료들의 단열 특성에 관하여 분석하였다.

  • PDF

Effects of the Moisture on the Overall Heat Transfer Through Heat Insulators Opaque Envelopes (불투명 외피의 열관류에서 단열재의 습도영향)

  • Lee, S.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.63-69
    • /
    • 1998
  • The heat conduction and the water vapour diffusion flow through heat insulators between hygroscopical moist building materials were measured by means of the plate method. It was found that the heat transport increases with a moisture motion occuring in the temperature drop. On his basis of simplified assumptions, the increase in the thermal conductivity was calculated from the rate of diffusion flow per unit area, which generally resulted in values inferior to the measured values. The Increase in the heat transport due to water vapour diffusion measured at a large-scale wall specimen was inferior to the one measured by means of the plate method by using a comparable arrangement of layers. The overall heat transfer caused by moisture motion is not a characteristic value of the material, but a property of the whole wall structure

  • PDF

Analysis on Thermomechanical Response to Tensile Deformation of GaN Nanowires (GaN 나노와이어의 인장 변형에 의한 열기계적 거동 해석)

  • Jung, Kwangsub;Zhou, Min;Cho, Maenghyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.301-305
    • /
    • 2012
  • In this work the mechanical behaviors of GaN nanowires are analyzed during tension, compression, and unloading deformations. The thermal conductivity of the nanowires at each deformed state is evaluated using an equilibrium Green-Kubo approach. Under tensile loading, the [0001]-oriented nanowires with hexagonal cross-sections undergo a phase transformation from wurtzite to a tetragonal structure. The phase transformation is not observed under compressive loading. The thermal conductivity decreases on going from compressive strains to tensile strains. The strain dependence of the thermal conductivity results from the relaxation time of phonon. A reverse transformation from the tetragonal structure to the wurtzite structure is observed during unloading. The thermal conductivities in the intermediate states are lower than the conductivity in the wurtzite structure at same strain. Such differences in the thermal conductivity between different atomic structures are mainly due to changes in the group velocity of phonon.