DOI QR코드

DOI QR Code

A Simple Method to Make the Quadruple Tank System Near Linear

  • Lee, Jietae (Department of Chemical Engineering, Kyungpook National University) ;
  • Kyoung, Inhyun (Department of Chemical Engineering, Kyungpook National University) ;
  • Heo, Jea Pil (Department of Chemical Engineering, Kyungpook National University) ;
  • Park, YoungSu (Department of Chemical Engineering, Kyungpook National University) ;
  • Lim, Yugyeong (Department of Chemical Engineering, Kyungpook National University) ;
  • Kim, Dong Hyun (Department of Chemical Engineering, Kyungpook National University) ;
  • Lee, Yongjeh (Department of Chemical and Biological Engineering, Korea University) ;
  • Yang, Dae Ryook (Department of Chemical and Biological Engineering, Korea University)
  • 투고 : 2017.08.02
  • 심사 : 2017.09.14
  • 발행 : 2017.12.01

초록

Quadruple tank liquid level systems are popular in testing multivariable control systems for multivariable processes with positive or negative zeros. The liquid level system is nonlinear and it will help to illustrate the robustness of control systems. However, due to nonlinearity, it can be cumbersome to obtain process parameters for testing linear control systems. Perturbation sizes are limited for valid linearized process models, requiring level sensors with high precision. A simple method where the outlet orifice is replaced to a long tube is proposed here. The effluent flow rate becomes proportional to the liquid level due to the friction loss of long tube and the liquid level system shows near linear dynamics. It is applied to the quadruple tank system for easier experiments.

키워드

참고문헌

  1. Astrom, K. J. and Ostberg, A. B., IEEE Control Systems Magazine, 6(5), 37(1986). https://doi.org/10.1109/MCS.1986.1105142
  2. Edgar, T. F., Ogunnaike, B. A., Downs, J. J., Muske, K. R. and Bequette, B. W., Comp. Chem. Eng., 30(10-12), 1749(2006). https://doi.org/10.1016/j.compchemeng.2006.05.012
  3. Johansson, K. H., IEEE Trans. Control Systems Technology, 8(3), 456(2000). https://doi.org/10.1109/87.845876
  4. Abdullah, A. and Zribi, M., Int. J. Comput. Commun., 7(4), 594 (2012).
  5. Alavi, S. M., Khaki-Sedigh, A., Labibi, B. and Hayes, M. J., IET Control Theory Appl., 1(4), 1046(2007). https://doi.org/10.1049/iet-cta:20060378
  6. Biswasa, P. P., Srivastavaa, R., Raya, S. and Samanta, A. N., Mechatronics, 19(4), 548(2009). https://doi.org/10.1016/j.mechatronics.2009.01.001
  7. Ma, M., Chen, H., Findeisen, R. and Allgower, F., Int. J. Innovative Computing, Information and Control, 8(10B), 7083(2012).
  8. Mercangoz, M. and Doyle III, F. J., J. Process Control, 17(3), 297(2007). https://doi.org/10.1016/j.jprocont.2006.11.003
  9. Peng, C., Han, Q. L. and Yue, D., IEEE Trans. Control Systems Technology, 21(3), 820(2013). https://doi.org/10.1109/TCST.2012.2196573
  10. Rusli, E., Ang, S. and Braatz, R. D., Chem. Eng. Educ., 38(3), 174 (2004).
  11. Srinivasarao, P. and Subbaiah, P., Int. J. Computer Applications, 68(15), 21(2013). https://doi.org/10.5120/11656-7167
  12. Vijula, D. A. and Devarajan, N., Int. J. Engineering and Technology (IJET), 5(6), 5057(2013).
  13. Dadhich, S. and Birk, W., European Control Conference (ECC), Strasbourg, France (2014).
  14. Shneiderman, D. and Palmor, Z. J., Journal of Process Control, 20(1), 18(2010). https://doi.org/10.1016/j.jprocont.2009.10.010
  15. Almurib, H. A. F., Askari, M. and Moghavvemi, M., SICE Annual Conference, September 13-18, Waseda University, Tokyo, Japan (2011).
  16. Gatzke, E. P., Meadows, E. S., Wang, C. and Doyle III, F. J., Comp. Chem. Eng., 24(2-7), 1503(2000). https://doi.org/10.1016/S0098-1354(00)00555-X
  17. Kundu, H., Cohen, I. M. and Dowling, D. R., Fluid Mechanics, 5th ed., Elsevier, U.S.A. (2011).
  18. Seborg, D. E., Edgar, T. F., Mellichamp, D. A. and Doyle, F. J., Process Dynamics and Control, 3rd ed., Wiley, U.S.A. (2010).