DOI QR코드

DOI QR Code

소규모 역삼투 담수화 시설에서 에너지 회수장치의 필요성에 대한 연구

Study on the Necessity of Energy Recovery Device in Small Scale Reverse Osmosis Desalination Plant

  • Jeon, Jongmin (Department of civil engineering, Pukyong National University) ;
  • Kwak, Kyungsup (Department of civil engineering, Pukyong National University) ;
  • Kim, Noori (Department of civil engineering, Pukyong National University) ;
  • Jung, Jaehak (Department of civil engineering, Pukyong National University) ;
  • Son, Dong-Min (Krosys Incorporated) ;
  • Kim, Suhan (Department of civil engineering, Pukyong National University)
  • 투고 : 2017.06.16
  • 심사 : 2017.07.24
  • 발행 : 2017.12.01

초록

에너지 회수장치는 역삼투 공정에서 에너지 소모량을 줄이기 위해 사용된다. 그러나 해수담수화 시장에서 소규모 에너지 회수장치(<$100m^3/d$)를 찾기는 쉽지 않다. 우리나라에서 음용수 생산을 위한 역삼투 해수담수화 시설은 대부분 도서지역이나 선박에서 소규모로 운영되고 있다. 즉, 국내에는 소규모 에너지 회수장치 수요가 잠재하고 있다. 본 연구에서는 고압펌프의 현실적인 효율과 국내 전력비 단가 등을 고려하여, 소규모 역삼투 공정의 에너지 소모량을 에너지 회수장치의 적용 여부 및 설치 장소(예: 육상, 도서, 선박)에 따라 비교 분석하였다. 분석 결과, 에너지 회수장치 적용 시 전력비는 1,914.1원/$m^3$ 까지 절감될 수 있고 소규모 시설과 선박에서는 절감효과가 증가되는 것을 확인하였다. 소규모 역삼투 담수화 시설이 대부분을 차지하는 국내 현실과 규모가 작아질수록 에너지 회수장치에 대한 전력비 절감효과가 커지는 본 연구의 결과를 고려한다면, 소규모 에너지 회수장치의 개발 필요성이 크다고 할 수 있다.

Energy recovery device (ERD) is used to save energy consumption in seawater reverse osmosis processes. However, small-scale ERDs (<$100m^3/d$) are hardly observed in seawater desalination market. In South Korea, most of seawater desalination plants for drinking water production are small-scaled and have been operated in island areas or on ships. Thus, the effect of ERDs for these small-scale SWRO processes should not be neglected. In this work, the small-scale SWRO processes are designed and analyzed in terms of energy consumption with/without ERD. The realistic efficiencies of high pressure pumps are considered for the energy analyses. The unit cost of electricity depending on the application place (e.g., inland and island areas, on ships) is investigated to calculate the energy cost for unit water production in various SWRO applications classified by plant capacity, application place, and the installation of ERD. As a result, the energy cost can be saved up to $1,640.4KRW/m^3$ when ERD is applied, and the saving effect increases at smaller plants on ships. In conclusion, the development of small-scale ERDs are necessary because small-scale SWRO processes are dominant in Korean seawater desalination market, and the electricity saving effect becomes higher at smaller-scaled system.

키워드

참고문헌

  1. Pruss-Ustun, A. B., Robert; Gore, Fiona; Bartram, Jamie, Safer water, better health. World Health Organization, 2008.
  2. Chekli, L., Phuntsho, S., Kim, J. E., Kim, J.,Choi, J. Y., Choi, J.-S., Kim, S., Kim, J. H., Hong, S., Sohn, J. and Shon, H. K., "A Comprehensive Review of Hybrid Forward Osmosis Systems: Performance, Applications and Future Prospects," J. Membr. Sci., 497, 430-449(2016). https://doi.org/10.1016/j.memsci.2015.09.041
  3. Jeon, J., Park, B., Yoon, Y. and Kim, S., "An Optimal Design Approach of Forward Osmosis and Reverse Osmosis Hybrid Process for Seawater Desalination," Desalin. Water Treat., 57, 26612-26620(2016). https://doi.org/10.1080/19443994.2016.1189701
  4. Park, S. W., Park, Y. S. and Chang, H. N., "Performance Change of Reverse Osmosis Membrane by Fabricating into Spiral-Wound Module," Korean Chem. Eng. Res., 28(1), 124-129(1990).
  5. Kim, Y., Lee, J. H., Lee, K. H., K, Y.-C., Oh, D. W. and Lee, J., "Performance Evaluation of Absorbent Solution for Draw Solute Recovery in Forward Osmosis Desalination Process," Korean Chem. Eng. Res., 51(2), 240-244(2013). https://doi.org/10.9713/kcer.2013.51.2.240
  6. Lee, H., Ryu, H., Lim, J.-H., Kim, J.-O., Lee, J. D. and Kim, S., "An Optimal Design Approach of Gas Hydrate and Reverse Osmosis Hybrid System for Seawater Desalination," Desalin. Water Treat., 57, 9009-9017(2016). https://doi.org/10.1080/19443994.2015.1049405
  7. Park, B., Lee, J., Kim, M., Won, Y. S., Lim, J. H. and Kim, S., "Enhanced Boron Removal Using Polyol Compounds in Seawater Reverse Osmosis Processes," Desalin. Water Treat., 57, 7910-7917 (2016). https://doi.org/10.1080/19443994.2015.1038596
  8. Kim, S., Cho, D., Lee, M. S., Oh, B. S., Kim, J. H. and Kim, I. S., "SEAHERO R & D Program and Key Strategies for the Scale-up of a Seawater Reverse Osmosis (SWRO) System," Desalination, 238, 1-9(2009). https://doi.org/10.1016/j.desal.2008.01.029
  9. Zhu, A., Christofides, P. D. and Cohen, Y., "Minimization of Energy Consumption for a Two-pass Membrane Desalination: Effect of Energy Recovery, Membrane Rejection and Retentate Recycling," Journal of Membrane Science 339, 126-137(2009). https://doi.org/10.1016/j.memsci.2009.04.039
  10. Farooque, A. M., Jamaluddin, A. T. M., Al-Reweli, A. R., Jalaluddin, P. A. M., Al-Marwani, S. M., Al-Mobayed, A. A. and Qasim, A. H., "Parametric Analyses of Energy Consumption and Losses in SWCC SWRO Plants Utilizing Energy Recovery Devices," Desalination, 219, 137-159(2008). https://doi.org/10.1016/j.desal.2007.06.004
  11. http://www.energyrecovery.com/wp-content/uploads/2014/12/0916_ER_desalProducts_brochure_interactive_v3.pdf.
  12. http://high-pressurepumps.danfoss.com/products/energy-recovery-devices
  13. https://www.flowserve.com.
  14. http://osmorec.com/product/technology.
  15. http://cyber.kepco.co.kr/ckepco.
  16. https://home.kepco.co.kr/kepco.
  17. Subramani, A., Badruzzaman, M., Oppenheimer, J. and Jacangelo, J. G., "Energy Minimization Strategies and Renewable Energy Utilization for Desalination : Review," Water Research, 45, 1907-1920 (2011). https://doi.org/10.1016/j.watres.2010.12.032
  18. Bermudez-Contreras, A. and Thomson, M., "Modified Operation of a Small Scale Energy Recovery Device for Seawater Reverse Osmosis," Desalin. Water Treat 13, 195-202(2010). https://doi.org/10.5004/dwt.2010.990
  19. Dow Liquid Separations, Filmtec Reverse Osmosis Membranes Technical Manual, The Dow Chemical Company Form No. 609- 00071-0705, 2005.
  20. Kim, D. I., Kim, J., Shon, H. K. and Hong, S., "Pressure Retarded Osmosis (PRO) for Integrating Seawater Desalination and Wastewater Reclamation: Energy Consumption and Fouling," J. Membr. Sci., 483, 24-41(2015).
  21. Xiong, W., Li, X., Xiang, J. and Wu, Q., "High-density Fermentation of Microalga Chlorella Protothecoides in Bioreactor for Microbio-diesel Production," Appl. Microbiol. Biotechnol., 78, 29-36(2008). https://doi.org/10.1007/s00253-007-1285-1
  22. http://www.demkor.co.kr/02/02_win1.php.
  23. http://www.law.go.kr.