DOI QR코드

DOI QR Code

해상 교량에 설치된 희생양극식 전기방식의 8년 이후의 성능에 관한 연구

A study on the performance of the sacrificial anode used for cathodic protection of a marine bridge after 8 years

  • Jeong, Jin-A (Department of Ship Operation, Korea Maritime and Ocean University) ;
  • Ha, Ji-Myung (Conclinic.ltd) ;
  • Lee, Du-Young (Department of Marine Engineering, Korea Maritime and Ocean University) ;
  • Lee, Sang-Deuk (Department of Ship Operation, Korea Maritime and Ocean University)
  • 투고 : 2016.05.02
  • 심사 : 2016.07.19
  • 발행 : 2016.07.31

초록

최근 우리나라의 남해고속도로 상에 있는 해상 교량의 교각에서 부식이 발생하였다. 이 해상 교량의 부식 손상부위를 보수하기 위하여 희생양극식 전기방식을 설치하였다. 본 연구에서 소개한 해상교량의 경우, 구조물의 상부에서는 부식이 발생되지 않았기 때문에 해수에 의한 조수간만의 영향을 받는 간만대와 비말대 부분에만 희생양극식 전기방식을 설치하였다. 해상교량에 희생양극식 전기방식을 설치한 후 약 8년이 경과된 시점에서 희생양극식 전기방식의 성능을 검증하기 위하여 방식전류, 방식전위 및 복극량을 측정하였다. 전체 60개의 교각에 설치된 희생양극식 음극방식의 성능에 관한 실험 결과는 방식 양호(13개 교각), 부분 방식(27개 교각), 일시적 오류(7개 교각), 피복 들뜸(13개 교각)과 같이 4부분으로 분류하였다. 방식성능이 불량한 교각에 대해서는 양극의 추가 설치 및 Jacket 시공 등과 같은 추가적인 조치가 필요하다고 판단된다.

Recently, corrosion occurred on the piles of a marine bridge located on the NamHae expressway in Korea. A sacrificial anode cathodic protection system was installed to prevent corrosion damage in the marine bridge. In the case of the marine bridge in this study, the sacrificial anode cathodic protection system was applied at the tidal and splash zones of the piles because the upper part of the structure was not corroded, and because corrosion occurs at the tidal and splash zones due to sea tides. To verify the performance of the sacrificial anode cathodic protection system 8 years later, cathodic protection (CP) current, CP potential, and degree of depolarization were measured. The experimental results on the performance of the sacrificial anode cathodic protection system from a total of 60 piles were classified into 4 categories: good CP effect results (13 piles), partial CP effect results (27 piles), temporarily erroneous results (5 piles), and need for maintenance because of delamination (15 piles). It was determined that additional repairs are required, such as the application of bulk anodes and jacket casings, for piles where the CP effect is poor.

키워드

참고문헌

  1. J. P. Broomfield, Corrosion of Steel in Concrete, 2nd Edition, London and New York, the US: Taylor & Francis, 2007.
  2. D. A. Jones, Principles and Prevention of Corrosion, 2nd Edition, Upper Saddle River, New Jersey, the US: Prentice-Hall, 1996.
  3. J. M. Ha, C. K. Jin, and J. A. Jeong, "Cathodic protection behavior of coastal bridge structure with sacrificial anode cathodic protection system," Corrosion Science and Technology, vol. 11, no. 6, pp. 242-243, 2012. https://doi.org/10.14773/cst.2012.11.6.242
  4. J. A. Jeong and C. K. Jin, "The effect of temperature and relative humidity on concrete slab specimens with impressed current cathodic protection system," Journal of the Korean Society of Marine Engineering, vol. 37, no. 3, pp. 260-262, 2013. https://doi.org/10.5916/jkosme.2013.37.3.260
  5. J. A. Jeong, W. S. Chung, and Y. H. Kim, "Electrochemical measurements of cathodic protection for reinforced concrete piles in a marine environment using embedded corrosion monitoring sensors," Journal of Metal & Materials International, vol. 19, no. 3, pp. 445-452, 2013. https://doi.org/10.1007/s12540-013-3010-1
  6. J. A. Jeong and C. K. Jin, "Three year performance of sacrificial anode cathodic protection system in the reinforced concrete bridge structures," Advanced Materials Research, vol. 753-755, pp. 467-475, 2013. https://doi.org/10.4028/www.scientific.net/AMR.753-755.467
  7. L. Bertolini and E. Redaelli, "Throwing power of cathodic prevention applied by means of sacrificial anode to partially submerged marine reinforced concrete piles: Results of numerical simulations," Corrosion Science, vol. 51, no. 9, pp. 2218-2230, 2009. https://doi.org/10.1016/j.corsci.2009.06.012
  8. L. Bertolini, F. Bolzoni, A. Cigada, T. Pastore, and P. Pedeferri, "Cathodic protection of new and old reinforced concrete structures," Corrosion Science, vol. 35, no. 5-8, pp. 1633-1639, 1993. https://doi.org/10.1016/0010-938X(93)90393-U
  9. K. M. Moon, K. H. Lee, H. R. Cho, M. H. Lee, Y. H. Kim, and J. K. Kim, "Effect of cathodic protection of adjacent steel piles on the life of sacrificial anode," Journal of the Korean Society of Ocean Engineers, vol. 22, no. 3, pp. 76-81, 2008 (in Korean).
  10. J. Carmona, P. Garces, and M. A. Climent, "Efficiency of a conductive cement-based anodic system for the application of cathodic protection, cathodic prevention and electrochemical chloride extraction to control corrosion in reinforced concrete structures," Corrosion Science, vol. 96, pp. 102-111, 2015. https://doi.org/10.1016/j.corsci.2015.04.012
  11. J. A. Jeong and C. K. Jin, "Tidal water effect on the hybrid cathodic protection systems for marine concrete structures," Journal of Advanced Concrete Technology, vol. 10, no. 12, pp. 389-394, 2012. https://doi.org/10.3151/jact.10.389
  12. J. A. Jeong, W. S. Chung, and Y. H. Kim, "Electrochemical measurements of cathodic protection for reinforced concrete piles in a marine environment using embedded corrosion monitoring sensors," Metals & Materials International, vol. 19, no.3, pp. 445-452, 2013. https://doi.org/10.1007/s12540-013-3010-1
  13. National Association of Corrosion Engineers, "Impressed current cathodic protection of reinforcing steel in atmospherically exposed concrete structures," NACE SP2090, 2007.