• Title/Summary/Keyword: Depolarization

Search Result 393, Processing Time 0.024 seconds

FLUORESCENCE DEPOLARIZATION IN DIFFERENT MOLECULAR SYSTEMS

  • Kim, Hack-Jin;Kang, Tai-Jong
    • Journal of Photoscience
    • /
    • v.1 no.1
    • /
    • pp.75-82
    • /
    • 1994
  • General features of the fluorescence depolarization are briefly reviewed. Molecular rotations and electronic excitation transports are considered to account for the fluorescence depolarization. Various molecular systems studied by the fluorescence depolarization are described. The FiSrster theory which forms a basis for the energy transfer is revisited. Several theoretical treatments for the fluorescence depolarization in liquid and solid phases such as classical hydrodynamics, probability distribution function, Green's function formalism, molecular dynamics simulation and Monte Carlo methods are introduced.

  • PDF

Requirement of EGF Receptor Kinase for Signaling by Calcium-Induced ERK Activation and Neurite Outgrowth in PC12 Cells

  • Park, Jung-Gyu;Jo, Young-Ah;Kim, Yun-Taik;Yoo, Young-Sook
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.468-474
    • /
    • 1998
  • Membrane depolarization in PC12 cells induces calcium influx via an L-type voltage-sensitive calcium channel (L-VSCC) and increases intracellular free calcium, which leads to tyrosine phosphorylation of epidermal growth factor (EGF) receptor and the associated adaptor protein, She. This activated EGF receptor complex then can activate mitogen-activated protein (MAP) kinase, as in nerve growth factor (NGF) receptor activation. In the present study, we investigated the role of EGF receptor in the signaling pathway initiated by membrane depolarization of PC12 cells. Prolonged membrane depolarization induced phosphorylation of extracellular signal-regulated kinase (ERK) within 1 min in undifferentiated PC12 cells. Pretreatment of PC12 cells with the calcium chelator EGTA abolished depolarization-stimulated ERK phosphorylation, but NGF-induced phosphorylation of ERK was not affected. The chronic treatment of phorbol ester, which down-regulated the activity of protein kinase C (PKC), did not affect the phosphorylation of ERK upon depolarization. In the presence of an inhibitor of EGF receptor, neither depolarization nor calcium ionophore increased the level of ERK phosphorylation. These data imply that the EGF receptor is functionally necessary to activate ERK and neurite outgrowth in response to the prolonged depolarization in PC12 cells, and also that PKC is apparently not involved in this signaling pathway.

  • PDF

Mechanisms of tert-Buthyl Hydroperoxide-induced Membrane Depolarization in Rat Spinal Substantia Gelatinosa Neurons

  • Lim, Seong-Jun;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.117-123
    • /
    • 2008
  • Reactive oxygen species (ROS) are toxic agents that may be involved in various neurodegenerative diseases. Recent studies indicate that ROS can act as modulators of neuronal activity, and are critically involved in persistent pain primarily through spinal mechanisms. In the present study, whole cell patch clamp recordings were carried out to investigate the effects of tert-buthyl hydroperoxide (t-BuOOH), an ROS, on neuronal excitability and the mechanisms underlying changes of membrane excitability. In current clamp condition, application of t-BuOOH caused a reversible membrane depolarization and firing activity in substantia gelatinosa (SG) neurons. When slices were pretreated with phenyl-N-tert-buthylnitrone (PBN) and ascorbate, ROS scavengers, t-BuOOH failed to induce membrane depolarization. However, isoascorbate did not prevent t-BuOOH-induced depolarization, suggesting that the site of ROS action is intracellular. The t-BuOOH-induced depolarization was not blocked by pretreatment with dithiothreitol (DTT), a sulfhydryl-reducing agent. The membrane-impermeant thiol oxidant 5,5-dithiobis 2-nitrobenzoic acid (DTNB) failed to induce membrane depolarization, suggesting that the changes of neuronal excitability by t-BuOOH are not caused by the modification of extrathiol group. The t-BuOOH-induced depolarization was suppressed by the phospholipase C (PLC) blocker U-73122 and inositol triphosphate ($IP_3$) receptor antagonist 2-aminoethoxydiphenylbolate (APB), and after depletion of intracellular $Ca^{2+}$ pool by thapsigargin. These data suggest that ROS generated by peripheral nerve injury can induce central sensitization in spinal cord, and t-BuOOH-induced depolarization may be regulated by intracellular $Ca^{2+}$ store mainly via $PLC-IP_3$ pathway.

Retrieval of Depolarization ratio using Sunphotometer data and Comparison with LIDAR Depolarization ratio (선포토미터 데이터를 이용한 편광소멸도 산출과 라이다 편광소멸도와의 비교)

  • Kim, Kwanchul;Choi, Sungchul;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.97-104
    • /
    • 2016
  • We present linear particle depolarization ratio at 440, 675, 870, and 1020 nm retrieved from measurements with an AERONET sun/sky radiometer at Osaka, Japan. The retrieved data were compared with lidar derived linear particle depolarization ratio at 532 nm at the same site. We find good agreement between linear particle depolarization ratios derived with Sun photometer and measured by lidar except for those at 440 nm. The coefficients of determination between lidar derived data and sun/sky radiometer derived data were 0.28, 0.81, 0.88, and 0.89 at 440, 675, 870, and 1020 nm, respectively. We find that the linear particle depolarization ratio derived with sun/sky radiometer varies by the mixing between Asian dust and pollution particles. As the mixing ratio of Asian dust and pollution particles is increased, the linear particle depolarization ratio values are lower than the values of pure Asian dust. It was confirmed by the value of single-scattering albedo and particle size distribution.

Assessment of the Intermolecular π-π Configurations of Poly(3-Hexylthiophene) using Polarized Raman Spectroscopy

  • Juwon Kim;Myeongkee Park
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.3
    • /
    • pp.146-150
    • /
    • 2024
  • Precise molecular configuration elucidation of poly(3-hexylthiophene) (P3HT) through advanced spectroscopic techniques is pivotal for enhancing P3HT-based photovoltaic device efficiencies since its high charge-carrier mobility is directly correlated to its well-ordered structure. In this study, we examine Raman depolarization ratios of annealed and non-annealed P3HT films to elucidate their intermolecular π-π configurations. Our findings suggest that the backbone of the annealed film possesses stronger π-π conjugation overlaps than that of the non-annealed film owing to the greater depolarization ratio of the annealed film. In addition, the depolarization ratios are also supported by theoretical calculations, where parallel-stacked thiophene structures display a higher depolarization ratio compared with that of twisted-stacked structures, as calculated by the Møller-Plesset perturbation theory. This study highlights the utility of polarized Raman spectroscopy as a versatile tool for assessing the degree of molecular order in highly conjugated polymer films.

Aerosol Optical Properties Retrieval and Separation of Asian Dust using AERONET Sun/Sky Radiometer Measurement at the Asian Dust Source Region (황사 발원지에서 선포토미터를 활용한 에어로졸의 광학적 특성 산출과 미세먼지속 황사구분)

  • Shin, Dongho;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.3
    • /
    • pp.245-251
    • /
    • 2016
  • We present linear particle depolarization ratio at 440, 675, 870, and 1020 nm retrieved from measurements with an AERONET sun/sky radiometer at the source region of Asian dust, Dunhuang. The linear particle depolarization ratios are retrieved at the two receptor sites (Gosan and Osaka). The highest linear particle depolarization ratio of 0.34 at 1020 nm is retrieved from nearly pure Asian dust. The linear particle depolarization ratio decreased as the volume concentration of fine-mode particle increased. We can confirm that the ratio of Asian dust is changed by the value of the linear particle depolarization ratio retrieved by AERONET data.

Depolarization and Repolarization in the Three Dimensional Cardiac Ventricular Model (3차원 심실모델에서의 탈분극과 재분극)

  • 이경중
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.407-412
    • /
    • 1994
  • This paper describes the construction of an anisotropic three dimensional ventricular model based on the bidomain model. The cardiac activation process in the normal cardiac cell and the myocardial ischemic cell are simulated by the Huygen's principle. The depolarization process in the myocardial ischemia displays the delayed activation compared to the normal state. The repolarization process is simulated by the myocardial potential at the arbitrary ellapsed time after activation process. Using the potential data, the equivalent cardiac source at the arbitrary time can be computed. In conclusion, this simulation suggests the possibilities of the depolarization and the repolarization process in the normal and abnormal myocardiac cells.

  • PDF

Properties of Yellow Sand with a Lidar Measurement in Spring 1994 (1994년 봄철의 LIDAR관측을 통한 황사특성)

  • 權成顔;岩坂泰信;紫田降;金潤信
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.315-321
    • /
    • 1995
  • The purpose of this report is to describe the lidar measurement of depolarization ratios of particulate matter (Depolarization Ratio of Yellow Sand) and to discuss the transformation of aerosols due to Yellow Sand event. The scattering profile shows high level during Yellow Sand event and scattering layers are thicker as compared to other seasons in about 3 .sim. 8km, and the values and mode height of scattering ratio corresponed with depolarization ratio. A distribution of total depolarization ratio during the observation period was 44.7 percent among total cases of 0.03 < Dt < 0.5 with scattering ratio > 30 and relative humidity < 30 was satisfied (popular Yellow Sand type).

  • PDF

Bender Typed Piezoelectric Multilayer Actuator

  • Ahn, Byung-Guk;Lee, Dong-Kyun;Han, Deuk-Young;Kang, Chong-Yoon;Park, Ji-Won;Kim, Hyun-Jai;Yoon, Seok-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.225-228
    • /
    • 2003
  • A Bender typed Multilayer Actuator(BMA) for decreasing the depolarization effect was designed and fabricated. Unlike bimorph and multimorph actuators in which depolarization occurred, the BMA did not generate depolarization because the polarization and the electric field directions are the same. The simulated results indicate that higher displacement of the BMA can be achieved by increasing input voltage. Compared with the multimorph actuator, the proposed actuator is expected to extend a life time as well as acceptable voltage range.

Up-regulation of Cyelin A-Cdk2 activity is associated with depolarization of mitochondrial membrane potential during apoptosis of human hepatoma SK-HEP1 cells induced by treatment with panaxadiol

  • Park, Byoung-Duck;Jin, Ying-Hua;Yim, Hyung-Shin;Lee, Seung-Ki
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.167.1-167.1
    • /
    • 2003
  • Here we show that panaxadiol, a ginseng saponin with a dammarane skeleton, induces acute apoptotic cell death in human hepatoma SK-HEP-1 cells as evidenced by analysis of DNA fragmentation, caspase activation, and changes in cell morphology. The kinetic study showed that panaxadiol-induced apoptosis is associated with depolarization of mitochondrial membrane potential and cytochrome c release. Sequential activations of caspases-depolarization of mitochondrial membrane potential and cytochrome c release. Sequential activations of caspases-9, and -3, or -7, but not of caspase 8 coincide well in a time dependent manner with mitochondrial membrane depolarization and cytochrome c release from mitochondria during apoptosis of SK-HEP-1 cells induced by treatment with panaxadiol. (omitted)

  • PDF