DOI QR코드

DOI QR Code

The non-linear FEM analysis of different connection lengths of internal connection abutment

내측 연결형 임플란트 지대주의 체결부 길이 변화에 따른 비선형 유한요소법적 응력분석

  • Lee, Yong-Sang (Department of Prosthodontics, Post-Graduate Dental School, Yonsei University) ;
  • Kang, Kyoung-Tak (Department of Mechanical Engineering, Yonsei University) ;
  • Han, Dong-Hoo (Department of Prosthodontics, Post-Graduate Dental School, Yonsei University)
  • 이용상 (연세대학교 치의학대학원) ;
  • 강경탁 (연세대학교 기계공학과) ;
  • 한동후 (연세대학교 치의학대학원)
  • Received : 2016.01.12
  • Accepted : 2016.04.06
  • Published : 2016.04.29

Abstract

Purpose: This study is aimed to assess changes of stress distribution dependent on different connection lengths and placement of the fixture top relative to the ridge crest. Materials and methods: The internal-conical connection implant which has a hexagonal anti-rotation index was used for FEM analysis on stress distribution in accordance with connection length of fixture-abutment. Different connection lengths of 2.5 mm, 3.5 mm, and 4.5 mm were designed respectively with the top of the fixture flush with residual ridge crest level, or 2 mm above. Therefore, a total of 6 models were made for the FEM analysis. The load was 170 N and 30-degree tilted. Results: In all cases, the maximum von Mises stress was located adjacent to the top portion of the fixture and ridge crest in the bone. The longer the connection length was, the lower the maximum von Mises stress was in the fixture, abutment, screw and bone. The reduction rate of the maximum von Mises stress depending on increased connection length was greater in the case of the fixture top at 2 mm above the ridge crest versus flush with the ridge crest. Conclusion: It was found that the longer the connection length, the lower the maximum von Mises stress appears. Furthermore, it will help prevent mechanical or biological complications of implants.

목적: 본 연구는 임플란트 지대주의 체결부 길이와 골정에 대한 고정체 상단의 위치에 따라서, 하중 적용 시 고정체, 지대주, 나사 및 골에서의 응력 분포에 어떤 변화가 나타나는지 평가해 보고자 하였다. 재료 및 방법: 원추형 사면과 육각 기둥 형태의 회전저항구조를 갖는 내측 연결형 임플란트에서 지대주의 체결부 길이가 2.5 mm, 3.5 mm, 4.5 mm인 경우와 각 경우에서 고정체 상단이 골정과 같거나 골정보다 2 mm 상방에 위치할 때를 상정하여, 유한요소분석을 위한 모델을 총 6개 형성하였다. 각 경우에서 170 N의 30도 경사하중을 적용하였다. 결과: 6개의 유한요소분석 모델 모두에서, 임플란트는 고정체와 지대주의 체결 상단 부위에서, 주위 골에서는 골정 부근에서 최대 응력 값을 나타냈다. 지대주의 체결부 길이가 길어질수록, 주어진 하중에서 발생되는 고정체, 지대주, 나사 및 골에서의 최대 응력 값은 줄어들었다. 고정체 상단이 골정과 동일한 높이에 있는 경우보다 골정 2 mm 상방에 위치하는 경우에서 지대주의 체결부 길이가 길어질수록 모든 부위에서 더 큰 비율로 최대 응력 값의 감소를 나타내었다. 결론: 지대주의 체결부 길이가 길어질수록 모든 부위에서 주어진 하중에 따른 최대 응력 값이 줄어드는 것을 알 수 있었고, 임플란트의 기계적 및 생물학적 합병증 예방에 도움이 될 수 있을 것으로 판단된다.

Keywords

References

  1. Simonis P, Dufour T, Tenenbaum H. Long-term implant survival and success: a 10-16-year follow-up of non-submerged dental implants. Clin Oral Implants Res 2010;21:772-7. https://doi.org/10.1111/j.1600-0501.2010.01912.x
  2. Wittneben JG, Buser D, Salvi GE, Burgin W, Hicklin S, Bragger U. Complication and failure rates with implant-supported fixed dental prostheses and single crowns: a 10-year retrospective study. Clin Implant Dent Relat Res 2014;16:356-64. https://doi.org/10.1111/cid.12066
  3. Esposito M, Hirsch J, Lekholm U, Thomsen P. Differential diagnosis and treatment strategies for biologic complications and failing oral implants: a review of the literature. Int J Oral Maxillofac Implants 1999;14:473-90.
  4. Schwarz MS. Mechanical complications of dental implants. Clin Oral Implants Res 2000;11:156-8. https://doi.org/10.1034/j.1600-0501.2000.011S1156.x
  5. Segundo RM, Oshima HM, da Silva IN, Burnett LH Jr, Mota EG, Silva LL. Stress distribution of an internal connection implant prostheses set: a 3D finite element analysis. Stomatologija 2009;11:55-9.
  6. Tawil G. Peri-implant bone loss caused by occlusal overload: repair of the peri-implant defect following correction of the traumatic occlusion. A case report. Int J Oral Maxillofac Implants 2008;23:153-7.
  7. Naert I, Duyck J, Vandamme K. Occlusal overload and bone/im-plant loss. Clin Oral Implants Res 2012;23:95-107.
  8. Mellal A, Wiskott HW, Botsis J, Scherrer SS, Belser UC. Stimulating effect of implant loading on surrounding bone. Comparison of three numerical models and validation by in vivo data. Clin Oral Implants Res 2004;15:239-48. https://doi.org/10.1111/j.1600-0501.2004.01000.x
  9. Merz BR, Hunenbart S, Belser UC. Mechanics of the implantabutment connection: an 8-degree taper compared to a butt joint connection. Int J Oral Maxillofac Implants 2000;15:519-26.
  10. Himmlova L, Dosta lova T, Ka covsky A, Konvickova S. Influence of implant length and diameter on stress distribution: a finite element analysis. J Prosthet Dent 2004;91:20-5. https://doi.org/10.1016/j.prosdent.2003.08.008
  11. Hudieb MI, Wakabayashi N, Kasugai S. Magnitude and direction of mechanical stress at the osseointegrated interface of the microthread implant. J Periodontol 2011;82:1061-70. https://doi.org/10.1902/jop.2010.100237
  12. Cehreli MC, Akca K, Iplikcioglu H. Force transmission of one- and two-piece morse-taper oral implants: a nonlinear finite element analysis. Clin Oral Implants Res 2004;15:481-9. https://doi.org/10.1111/j.1600-0501.2004.01025.x
  13. Asvanund P, Morgano SM. Photoelastic stress analysis of external versus internal implant-abutment connections. J Prosthet Dent 2011;106:266-71. https://doi.org/10.1016/S0022-3913(11)60128-5
  14. Balik A, Karatas MO, Keskin H. Effects of different abutment connection designs on the stress distribution around five different implants: a 3-dimensional finite element analysis. J Oral Implantol 2012;38:491-6. https://doi.org/10.1563/AAID-JOI-D-10-00127
  15. Schmitt CM, Nogueira-Filho G, Tenenbaum HC, Lai JY, Brito C, Doring H, Nonhoff J. Performance of conical abutment (Morse Taper) connection implants: a systematic review. J Biomed Mater Res A 2014;102:552-74. https://doi.org/10.1002/jbm.a.34709
  16. Chu CM, Huang HL, Hsu JT, Fuh LJ. Influences of internal tapered abutment designs on bone stresses around a dental implant: three-dimensional finite element method with statistical evaluation. J Periodontol 2012;83:111-8. https://doi.org/10.1902/jop.2011.110087
  17. Jung PW. Three dimensional finite element analysis on the contact between implant and abutment. Master's Thesis; Seoul; Seoul National University School of Dentistry; 2012.
  18. Kim JS. Influence of the length of internal connection on screw loosening in internal connection implants. Master's Thesis; Seoul; Department of Dentistry, Graduate School, Yonsei University; 2010.
  19. Gultekin BA, Gultekin P, Yalcin S. Application of finite element analysis in implant dentistry. Finite Element Analysisd New Trends and Developments. Rijeka, Croatia: Intech 2012:21-54.
  20. Kawaguchi T, Kawata T, Kuriyagawa T, Sasaki K. In vivo 3-dimensional measurement of the force exerted on a tooth during clenching. J Biomech 2007;40:244-51. https://doi.org/10.1016/j.jbiomech.2006.01.004
  21. Balik A, Karatas MO, Keskin H. Effects of different abutment connection designs on the stress distribution around five different implants: a 3-dimensional finite element analysis. J Oral Implantol 2012;38:491-6. https://doi.org/10.1563/AAID-JOI-D-10-00127
  22. Canullo L, Coelho PG, Bonfante EA. Mechanical testing of thinwalled zirconia abutments. J Appl Oral Sci 2013;21:20-4. https://doi.org/10.1590/1678-7757201302124
  23. Nagasawa S, Hayano K, Niino T, Yamakura K, Yoshida T, Mizoguchi T, Terashima N, Tamura K, Ito M, Yagasaki H, Kubota O, Yoshimura M. Nonlinear stress analysis of titanium implants by finite element method. Dent Mater J 2008;27:633-9. https://doi.org/10.4012/dmj.27.633
  24. Sakaguchi RL, Borgersen SE. Nonlinear contact analysis of preload in dental implant screws. Int J Oral Maxillofac Implants 1995;10:295-302.
  25. Binon PP. Evaluation of three slip fit hexagonal implants. Implant Dent 1996;5:235-48. https://doi.org/10.1097/00008505-199600540-00002
  26. Mangano C, Mangano F, Piattelli A, Iezzi G, Mangano A, La Colla L. Prospective clinical evaluation of 1920 Morse taper connection implants: results after 4 years of functional loading. Clin Oral Implants Res 2009;20:254-61. https://doi.org/10.1111/j.1600-0501.2008.01649.x
  27. Dibart S, Warbington M, Su MF, Skobe Z. In vitro evaluation of the implant-abutment bacterial seal: the locking taper system. Int J Oral Maxillofac Implants 2005;20:732-7.
  28. Rack A, Rack T, Stiller M, Riesemeier H, Zabler S, Nelson K. In vitro synchrotron-based radiography of micro-gap formation at the implant-abutment interface of two-piece dental implants. J Synchrotron Radiat 2010;17:289-94. https://doi.org/10.1107/S0909049510001834
  29. McCracken M. Dental implant materials: commercially pure titanium and titanium alloys. J Prosthodont 1999;8:40-3. https://doi.org/10.1111/j.1532-849X.1999.tb00006.x
  30. Gratton DG, Aquilino SA, Stanford CM. Micromotion and dynamic fatigue properties of the dental implant-abutment interface. J Prosthet Dent 2001;85:47-52. https://doi.org/10.1067/mpr.2001.112796
  31. Cha HS, Kim YS, Jeon JH, Lee JH. Cumulative survival rate and complication rates of single-tooth implant; focused on the coronal fracture of fixture in the internal connection implant. J Oral Rehabil 2013;40:595-602. https://doi.org/10.1111/joor.12065
  32. Holmes DC, Loftus JT. Influence of bone quality on stress distribution for endosseous implants. J Oral Implantol 1997;23:104-11.
  33. Woon HY, Choi YS, Cho IH. Effect of implant types and bone resorption on the fatigue life and fracture characteristics of dental implant. J Dent Rehab Appl Sci 2010;26:121-43.
  34. Gehrke SA, Souza Dos Santos Vianna M, Dedavid BA. Influence of bone insertion level of the implant on the fracture strength of different connection designs: an in vitro study. Clin Oral Investig 2014;18:715-20. https://doi.org/10.1007/s00784-013-1039-7
  35. Balshi TJ. An analysis and management of fractured implants: a clinical report. Int J Oral Maxillofac Implants 1996;11:660-6.

Cited by

  1. 지대주 나사 풀림 방지를 위한 새로운 Lock Screw 시스템의 효과에 대한 유한요소해석적 연구 vol.35, pp.3, 2016, https://doi.org/10.14368/jdras.2019.35.3.132