DOI QR코드

DOI QR Code

An in vitro study of mesenchymal stem cell proliferation on titanium discs coated with rhTGF-β2/PLGA by electrospray

Electrospray법으로 rhTGF-β2/PLGA 복합체를 코팅한 티타늄에서의 간엽줄기세포 증식에 관한 연구

  • Kim, Joohyung (Department of Prosthodontics, Seoul National University Dental Hospital, School of Dentistry, Seoul National University) ;
  • Kim, Seong-Kyun (Department of Prosthodontics, Seoul National University Dental Hospital, School of Dentistry, Seoul National University) ;
  • Heo, Seong-Joo (Department of Prosthodontics, Seoul National University Dental Hospital, School of Dentistry, Seoul National University) ;
  • Koak, Jai-Young (Department of Prosthodontics, Seoul National University Dental Hospital, School of Dentistry, Seoul National University) ;
  • Lee, Woo-Sung (Department of Prosthodontics, Seoul National University Dental Hospital, School of Dentistry, Seoul National University) ;
  • Lee, Joo-Hee (Department of Medical Science, Major in Dentistry, Ulsan University) ;
  • Park, Ji-Man (Department of Prosthodontics and Dental Research Institute, Seoul National University Gwanak Dental Hospital)
  • 김주형 (서울대학교 치의학대학원 치과보철학교실) ;
  • 김성균 (서울대학교 치의학대학원 치과보철학교실) ;
  • 허성주 (서울대학교 치의학대학원 치과보철학교실) ;
  • 곽재영 (서울대학교 치의학대학원 치과보철학교실) ;
  • 이우성 (서울대학교 치의학대학원 치과보철학교실) ;
  • 이주희 (울산대학교 서울아산병원 치과보철과) ;
  • 박지만 (관악서울대학교 치과병원)
  • Received : 2016.03.18
  • Accepted : 2016.03.30
  • Published : 2016.04.29

Abstract

Purpose: The purpose of this study is to identify the effect of mesenchymal stem cell proliferation on recombinant human transforming growth factor-beta (rhTGF-${\beta}2$) / poly (D,L-lactide-co-glycolide) (PLGA) treated titanium discs by electrospray. Materials and methods: Anodized titanium surface coated with PLGA was used for a control group to compare anodized titanium surface coated with 125 ng/ml and 500 ng/ml rhTGF-${\beta}2$ as test groups. Atomic force microscope (AFM) test was utilized to determine the difference in coating surface roughness, and field-emission scanning electron microscopy (FE-SEM) was taken to visualize even distribution of coating particles on titanium discs. The mesenchymal stem cell proliferation was tested by using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl-tetrazolium bromide) assay on 1st, 4th, 7th days. Results: According to AFM results, there was no statistically significant difference in titanium discs treated with PLGA and with rhTGF-${\beta}2$/PLGA (P>.05). MTT assay test results showed that there was statistically significant difference in mesenchymal stem cell proliferation on test groups compared to control groups at 7th day, and cell viability on discs coated with rhTGF-${\beta}2$ was significantly higher than control groups (P<.05). Conclusion: Titanium surface coated with rhTGF-${\beta}2$/PLGA shows statistically significant higher cell proliferation and the titanium surface coated with the higher concentration of rhTGF-${\beta}2$ presents faster cell growth activity.

목적: 본 연구는 in-vitro 상에서 recombinant human transforming growth factor-beta (rhTGF-${\beta}2$)와 poly(D,L-lactide-co-glycolide) (PLGA) 의 복합체를 티타늄 디스크 표면에 코팅하여, 생물학적으로 간엽줄기세포 증식에 미치는 영향을 조사하기 위해 시행되었다. 재료 및 방법: 양극산화 디스크에 일렉트로스프레이 코팅법을 이용하여 anodized 된 티타늄 디스크를 대조군으로 설정하고, rhTGF-${\beta}2$를 125 ng/ml와 500 ng/ml 농도로 코팅한 것을 실험군으로 하였다. 티타늄 디스크 표면에 분사된 복합체가 균일하게 분사되었는지 field-emission scanning electron microscopy (FE-SEM)을 통해 확인하였으며, atomic force microscope (AFM) test를 이용하여 rhTGF-${\beta}2$로 코팅한 디스크와 양극산화 디스크의 거칠기 차이를 확인하였다. 디스크 위에 간엽줄기세포 배양 후 1, 4, 7일에 세포증식 양상을 MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl-tetrazolium bromide) assay 검사를 통해 확인하였다. 결과: AFM 결과 대조군과 실험군에서 거칠기의 유의할만한 차이가 없었다 (P>.05). MTT 결과 7일차 배양 결과에서 125 ng/ml와 500 ng/ml PLGA/TGF-${\beta}2$처리된 그룹은 각각 평균 0.45와 0.48이였으며, 대조군은 평균 0.33으로 PLGA/TGF-${\beta}2$처리된 그룹에서 세포 증식이 더 활성화 되는 것을 확인할 수 있었다 (P<.05). 결론: rhTGF-${\beta}2$ 복합체를 electrospray법으로 코팅한 티타늄 표면에서 7일차에서 줄기간엽세포의 빠른 증식을 확인하였다. 또한 복합체 처리군의 농도가 증가할수록 높은 세포 성장 수치를 보였다.

Keywords

References

  1. Hermann JS, Cochran DL, Nummikoski PV, Buser D. Crestal bone changes around titanium implants. A radiographic evaluation of unloaded nonsubmerged and submerged implants in the canine mandible. J Periodontol 1997;68:1117-30. https://doi.org/10.1902/jop.1997.68.11.1117
  2. Sul YT, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials 2002;23:491-501. https://doi.org/10.1016/S0142-9612(01)00131-4
  3. Xie J, Baumann MJ, McCabe LR. Osteoblasts respond to hydroxyapatite surfaces with immediate changes in gene expression. J Biomed Mater Res A 2004;71:108-17.
  4. Ivanoff CJ, Hallgren C, Widmark G, Sennerby L, Wennerberg A. Histologic evaluation of the bone integration of TiO(2) blasted and turned titanium microimplants in humans. Clin Oral Implants Res 2001;12:128-34. https://doi.org/10.1034/j.1600-0501.2001.012002128.x
  5. Orsini G, Assenza B, Scarano A, Piattelli M, Piattelli A. Surface analysis of machined versus sandblasted and acid-etched titanium implants. Int J Oral Maxillofac Implants 2000;15:779-84.
  6. Junker R, Dimakis A, Thoneick M, Jansen JA. Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res 2009;20:185-206. https://doi.org/10.1111/j.1600-0501.2009.01777.x
  7. Bosetti M, Boccafoschi F, Leigheb M, Cannas MF. Effect of different growth factors on human osteoblasts activities: a possible application in bone regeneration for tissue engineering. Biomol Eng 2007;24:613-8. https://doi.org/10.1016/j.bioeng.2007.08.019
  8. Kim HD, Valentini RF. Human osteoblast response in vitro to platelet-derived growth factor and transforming growth factor-beta delivered from controlled-release polymer rods. Biomaterials 1997;18:1175-84. https://doi.org/10.1016/S0142-9612(97)00049-5
  9. De Ranieri A, Virdi AS, Kuroda S, Shott S, Leven RM, Hallab NJ, Sumner DR. Local application of rhTGF-beta2 enhances periimplant bone volume and bone-implant contact in a rat model. Bone 2005;37:55-62. https://doi.org/10.1016/j.bone.2005.03.011
  10. Cho YJ, Heo SJ, Koak JY. Kim SK, Lee JH. Cellular responses on anodized titanium discs coated with $1{\alpha}$,25-dihydroxyvitamin D3 incorporated Poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles. J Korean Acad Prosthodont 2008;46:620-7. https://doi.org/10.4047/jkap.2008.46.6.620
  11. Lee SY. Effect of poly(D,L-lactide-co-glycolide)/bone morphogenic protein-2 coating of anodized titanium surface on osteoblast-like cells. MS Thesis. In: Korea, Seoul University, 2010.
  12. Fan H, Tao H, Wu Y, Hu Y, Yan Y, Luo Z. TGF-${\beta}3$ immobilized PLGA-gelatin/chondroitin sulfate/hyaluronic acid hybrid scaffold for cartilage regeneration. J Biomed Mater Res A 2010;95:982-92.
  13. Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282:1-18. https://doi.org/10.1016/j.ijpharm.2004.04.013
  14. Sims NA, Gooi JH. Bone remodeling: Multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol 2008;19:444-51. https://doi.org/10.1016/j.semcdb.2008.07.016
  15. Centrella M, McCarthy TL, Canalis E. Transforming growth factor-beta and remodeling of bone. J Bone Joint Surg Am 1991;73:1418-28. https://doi.org/10.2106/00004623-199173090-00022
  16. Centrella M, McCarthy TL, Canalis E. Transforming growth factor beta is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures from fetal rat bone. J Biol Chem 1987;262:2869-74.
  17. Lomri A, Marie PJ. Bone cell responsiveness to transforming growth factor beta, parathyroid hormone, and prostaglandin E2 in normal and postmenopausal osteoporotic women. J Bone Miner Res 1990;5:1149-55.
  18. Lomri A, Marie PJ. Effects of transforming growth factor type beta on expression of cytoskeletal proteins in endosteal mouse osteoblastic cells. Bone 1990;11:445-51. https://doi.org/10.1016/8756-3282(90)90141-K
  19. Machwate M, Jullienne A, Moukhtar M, Lomri A, Marie PJ. cfos protooncogene is involved in the mitogenic effect of transforming growth factor-beta in osteoblastic cells. Mol Endocrinol 1995;9:187-98.
  20. Robey PG, Young MF, Flanders KC, Roche NS, Kondaiah P, Reddi AH, Termine JD, Sporn MB, Roberts AB. Osteoblasts synthesize and respond to transforming growth factor-type beta (TGFbeta) in vitro. J Cell Biol 1987;105:457-63. https://doi.org/10.1083/jcb.105.1.457
  21. Rosen DM, Stempien SA, Thompson AY, Seyedin SM. Transforming growth factor-beta modulates the expression of osteoblast and chondroblast phenotypes in vitro. J Cell Physiol 1988;134:337-46. https://doi.org/10.1002/jcp.1041340304
  22. Sena K, Sumner DR, Virdi AS. Effect of recombinant human transforming growth factor-beta2 dose on bone formation in rat femur titanium implant model. J Biomed Mater Res A 2010;92:1210-7.
  23. Yoo SY, Kim SK, Heo SJ, Koak JY, Lee JH, Park JM. Biochemical responses of anodized titanium implants with a poly(lactide-coglycolide)/bone morphogenic protein-2 submicron particle coating. Part 1: an in vitro study. Int J Oral Maxillofac Implants 2015;30:512-8. https://doi.org/10.11607/jomi.3701a
  24. Agrawal CM, Niederauer GG, Athanasiou KA. Fabrication and characterization of PLA-PGA orthopedic implants. Tissue Eng 1995;1:241-52. https://doi.org/10.1089/ten.1995.1.241
  25. Hahn H, Palich W. Preliminary evaluation of porous metal surfaced titanium for orthopedic implants. J Biomed Mater Res 1970;4:571-7. https://doi.org/10.1002/jbm.820040407
  26. Geesink RG, de Groot K, Klein CP. Bonding of bone to apatitecoated implants. J Bone Joint Surg Br 1988;70:17-22.
  27. de Groot K, Gesink R, Klein CP. Plasma sprayed coatings of hydroxylapatite. J Biomed Mater Res 1987;21:1375-81. https://doi.org/10.1002/jbm.820211203
  28. Catledge SA, Vohra YK, Bellis SL, Sawyer AA. Mesenchymal stem cell adhesion and spreading on nanostructured biomaterials. J Nanosci Nanotechnol 2004;4:986-9. https://doi.org/10.1166/jnn.2004.137
  29. Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Opin Solid State Mater Sci 2002;6:319-27. https://doi.org/10.1016/S1359-0286(02)00117-1