DOI QR코드

DOI QR Code

Raman Spectroscopy Analysis of Inter Metallic Dielectric Characteristics in IC Device

Silicon 기반 IC 디바이스에서의 층간 절연막 특성 분석 연구

  • Kwon, Soon Hyeong (Department of Nano materials Science & Engineering, School of Integrative Engineering, Chung-Ang University) ;
  • Pyo, Sung Gyu (Department of Nano materials Science & Engineering, School of Integrative Engineering, Chung-Ang University)
  • 권순형 (중앙대학교 융합공학과 나노공학) ;
  • 표성규 (중앙대학교 융합공학과 나노공학)
  • Received : 2016.12.12
  • Accepted : 2016.12.16
  • Published : 2016.12.31

Abstract

Along the few nano sizing dimensions of integrated circuit (IC) devices, acceptable interlayer material for design is inevitable. The interlayer which include dielectric, interconnect, barrier etc. needs to achieve not only electrical properties, but also mechanical properties for endure post manufacture process and prolonging life time. For developing intermetallic dielectric (IMD) the mechanical issues with post manufacturing processes were need to be solved. For analyzing specific structural problem and material properties Raman spectroscopy was performed for various researches in Si semiconductor based materials. As improve of the laser and charge-coupled device (CCD) technology the total effectiveness and reliability was enhanced. For thin film as IMD developed material could be analyzed by Raman spectroscopy, and diverse researches of developing method to analyze thin layer were comprehended. Also In-situ analysis of Raman spectroscopy is introduced for material forming research.

Keywords

References

  1. L. Wilson, "International technology roadmap for semiconductors (ITRS)", Semiconductor Industry Association, (2013).
  2. K. Maex, M. Baklanov, D. Shamiryan, S. Brongersma and Z. Yanovitskaya, "Low dielectric constant materials for microelectronics", J. Appl. Phys., 93(11), 8793 (2003). https://doi.org/10.1063/1.1567460
  3. A. Grill, S. M. Gates, T. E. Ryan, S. V. Nguyen and D. Priyadarshini, "Progress in the development and understanding of advanced low k and ultralow k dielectrics for very largescale integrated interconnects-State of the art", Appl. Phys. Rev., 1(1), 011306 (2014). https://doi.org/10.1063/1.4861876
  4. E. Kim, M. Lee, S. Kim and S. E. Kim, "Ti/Cu CMP process for wafer level 3D integration", J. Microelectron. Packag. Soc., 19(3), 37 (2012). https://doi.org/10.6117/kmeps.2012.19.3.037
  5. J. C. Lam, M. Y. Huang, T. H. Ng, M. K. B. Dawood, F. Zhang, A. Du, H. Sun, Z. Shen and Z. Mai, "Evidence of ultra-low-k dielectric material degradation and nanostructure alteration of the Cu/ultra-low-k interconnects in time-dependent dielectric breakdown failure", Appl. Phys. Lett., 102(2), 022908 (2013). https://doi.org/10.1063/1.4776735
  6. W. Lin, J. Lin, T. Tsai, C. Hsu, C. Liu, J. Lin, C. Hwang and J. Wu, "Effects of Cu surface roughness on TDDB for direct polishing ultra-low k dielectric Cu interconnects at 40nm technology node and beyond", Microelectron. Eng., 92, 115 (2012). https://doi.org/10.1016/j.mee.2011.04.057
  7. M. G. Albrecht and C. Blanchette, "Materials issues with thin film hydrogen silsesquioxane low K dielectrics", J. Electrochem. Soc., 145(11), 4019 (1998). https://doi.org/10.1149/1.1838907
  8. H.-C. Hsu, L.-M. Chu, B. Liu and C.-C. Fu, "An investigation on dicing 28-nm node Cu/low-k wafer with a Picosecond Pulse Laser", J. Microelectron. Packag. Soc., 21(4), 63 (2014). https://doi.org/10.6117/kmeps.2014.21.4.063
  9. N. Fainer, Y. Rumyantsev, M. Kosinova, E. Maximovski, V. Kesler, V. Kirienko and F. Kuznetsov, "Low-k dielectrics on base of silicon carbon nitride films", Surf. Coat. Technol., 201(22), 9269 (2007). https://doi.org/10.1016/j.surfcoat.2007.04.046
  10. Y.-L. Cheng, K.-C. Kao, G.-S. Chen, J.-S. Fang, C.-R. Sun and W.-H. Lee, "Effect of annealing temperature on electrical and reliability characteristics of HfO 2/porous low-k dielectric stacks", Microelectron. Eng., 162, 34 (2016). https://doi.org/10.1016/j.mee.2016.04.013
  11. J. C. K. Lam, M. Y. M. Huang, H. Tan, Z. Mo, Z. Mai, C. Pei Wong, H. Sun and Z. Shen, "Vibrational spectroscopy of low-k/ultra-low-k dielectric materials on patterned wafers", J. Vac. Sci. Technol., A, 29(5), 051513 (2011). https://doi.org/10.1116/1.3625099
  12. M. Y. Huang, J. C. Lam, H. Tan, T. H. Ng, M. K. B. Dawood and Z. H. Mai "UV-Raman Microscopy on the Analysis of Ultra-Low-K Dielectric Materials on Patterned Wafers", Adv. Mater. Res., 740, 680, (2013). https://doi.org/10.4028/www.scientific.net/AMR.740.680
  13. I. De Wolf, "Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits", Semicond. Sci. Technol., 11(2), 139 (1996). https://doi.org/10.1088/0268-1242/11/2/001
  14. I. De Wolf, J. Chen, M. Rasras, W. M. van Spengen and V. Simons "High-resolution stress and temperature measurements in semiconductor devices using micro-Raman spectroscopy", International Symposium on Photonics and Applications (ISPA), Singapore, 239, International Society for Optics and Photonics, (1999).
  15. E. Anastassakis, "Strain and piezoelectric effects on the phonon frequencies in heterostructures", Solid State Commun., 84(1-2), 47 (1992). https://doi.org/10.1016/0038-1098(92)90292-H
  16. S. Tkachev, M. Manghnani, A. Niilisk, J. Aarik and H. Mandar, "Micro-Raman spectroscopy and X-ray diffraction studies of atomic-layer-deposited $ZrO_2$ and $HfO_2$ thin films", J. Mater. Sci., 40(16), 4293 (2005). https://doi.org/10.1007/s10853-005-2826-6
  17. N. Everall, "Depth profiling with confocal Raman microscopy, Part I", Spectroscopy-springfield Then Eugene Then Duluth-, 19, 22 (2004).
  18. N. J. Everall, "Modeling and measuring the effect of refraction on the depth resolution of confocal Raman microscopy", Appl. Spectrosc., 54(6), 773 (2000). https://doi.org/10.1366/0003702001950382
  19. N. J. Everall, "Confocal Raman microscopy: why the depth resolution and spatial accuracy can be much worse than you think", Appl. Spectrosc., 54(10), 1515 (2000). https://doi.org/10.1366/0003702001948439
  20. N. Everall, "Depth profiling with confocal Raman microscopy, part II", Spectroscopy-springfield Then Eugene Then Duluth-, 19, 16 (2004).
  21. F. Fan, Z. Feng, K. Sun, M. Guo, Q. Guo, Y. Song, W. Li and C. Li, "In situ UV Raman spectroscopic study on the synthesis mechanism of AlPO-5", Angew. Chem. Int. Ed. Engl., 48(46), 8743 (2009). https://doi.org/10.1002/anie.200903601
  22. N. Y. Kwak, C. Y. Ham, M. S. Ko, S. C. Shin, S. J. Yeom, C. W. Park, C. H. Kang, B. S. Lee, S. G. Park and N. J. Kwak, "In-line Monitoring of Grain Size Distribution of Channel Poly Si used in 3D NAND Flash Memory Devices using Multiwavelength Raman Spectroscopy", MRS Adv., 1(05), 339 (2016). https://doi.org/10.1557/adv.2016.1
  23. H. Ming, J. Plawsky, T.-M. Lu, S. Novak, L. Vanamurthy and H. Bakhru, "Cu penetration into low-k dielectric during deposition and bias-temperature stress", Appl. Phys. Lett., 97(25), (2010).
  24. J. N. Myers, X. Zhang, J. D. Bielefeld and Z. Chen, "Plasma Treatment Effects on Molecular Structures at Dense and Porous Low-k SiCOH Film Surfaces and Buried Interfaces", J. Phys. Chem. C, 119(39), 22514 (2015). https://doi.org/10.1021/acs.jpcc.5b06725
  25. X. Zhang, J. N. Myers, Q. Lin, J. D. Bielefeld and Z. Chen, "Probing the molecular structures of plasma-damaged and surface-repaired low-k dielectrics", PCCP, 17(39), 26130 (2015). https://doi.org/10.1039/C5CP03649F
  26. M. Y. Huang, B. Liu, P. K. Tan, J. C. Lam and Z. Mai, "Enhancement of Raman signals from low-k dielectrics with angle-resolved light scattering on nanostructure patterned Cu/low-k interconnects of IC devices", J. Vac. Sci. Technol., A, 33(2), 020603 (2015). https://doi.org/10.1116/1.4905939
  27. D. Chandler-Horowitz and P. M. Amirtharaj, "High-accuracy, midinfrared (450 cm$^{-1}$ <= omega <= 4000 cm$^{-1}$) refractive index values of silicon", J. Appl. Phys., 97(12), 3526 (2005).
  28. F. D'Amico, F. Cammisuli, R. Addobbati, C. Rizzardi, A. Gessini, C. Masciovecchio, B. Rossi and L. Pascolo, "Oxidative damage in DNA bases revealed by UV resonant Raman spectroscopy", Analyst, 140(5), 1477 (2015). https://doi.org/10.1039/C4AN02364A
  29. F. Fan, Z. Feng and C. Li, "UV Raman spectroscopic studies on active sites and synthesis mechanisms of transition metalcontaining microporous and mesoporous materials", Acc. Chem. Res., 43(3), 378 (2009). https://doi.org/10.1021/ar900210g
  30. J. W. Ager and M. D. Drory, "Quantitative measurement of residual biaxial stress by Raman spectroscopy in diamond grown on a Ti alloy by chemical vapor deposition", Phys. Rev. B, 48(4), 2601 (1993). https://doi.org/10.1103/PhysRevB.48.2601
  31. H. Yamin, H. Tan, D. Wang, J. Lam and Z. Mai, "Experiments and results of Raman and FTIR complementary vibrational spectroscopy for IC reliability failure analysis", Proceedings of the 21th International Symposium on the Physical and Failure Analysis of Integrated Circuits(IPFA), Singapore, 291, IEEE, (2014).
  32. D. D. Wang, W. L. Wang, M. Y. Huang, A. Lek, J. Lam and Z. H. Mai, "Failure mechanism analysis and process improvement on time-dependent dielectric breakdown of Cu/ultralow-k dielectric based on complementary Raman and FTIR spectroscopy study", AIP Adv., 4(7), 077124 (2014). https://doi.org/10.1063/1.4890960
  33. Y. Guhel, J. Bernard and B. Boudart, "In situ Raman characterization of CeO2 thin films sputtered on (111) Si in order to optimize the post growth annealing parameters", Microelectron. Eng., 118, 29 (2014). https://doi.org/10.1016/j.mee.2014.01.014
  34. K. Nishida, K. Morisawa, A. Hiraki, S. Muraishi and T. Katoda, "In-situ monitoring of PE-CVD growth of TiO 2 films with laser Raman spectroscopy", Appl. Surf. Sci., 159, 143 (2000).
  35. H. Y. H. Chan, C. G. Takoudis and M. J. Weaver, "In-situ monitoring of chemical vapor deposition at ambient pressure by surface-enhanced Raman spectroscopy: Initial growth of tantalum (V) oxide on platinum", J. Am. Chem. Soc., 121(39), 9219 (1999). https://doi.org/10.1021/ja991707s
  36. I. Burlacov, J. Jirkovsky, M. Muller and R. Heimann, "Induction plasma-sprayed photocatalytically active titania coatings and their characterisation by micro-Raman spectroscopy", Surf. Coat. Technol., 201(1), 255 (2006). https://doi.org/10.1016/j.surfcoat.2005.11.117